

 Thesis Proposal

Vasco Calais Pedro

Thesis Committee :

Jaime Carbonell(Chair)

Eric Nyberg

Robert Frederking

Eduard Hovy(USC)

Abstract

In the last decades the number of available ontologies has grown considerably. These

resources offer the promise of easily-accessible, open-domain ontological information,

but the existence of such diverse ontologies raises the issue of information merging and

reuse. A comparison of available ontologies reveals both redundant and complementary

coverage, but the variety of frameworks and languages used for ontology development

makes it a challenge to merge query results from different ontologies.

This research proposes to address this problem by building an ontological

middleware level for only small fragments of ontologies in an on-demand basis by

querying multiple ontologies and merging the query results from multiple knowledge

base systems. We then follow ontological chains and inferences across ontologies, using

partial query results from one ontology to query another. This is a more complex version

of cross-data-base joins, where the data schemas are sufficiently compatible.

An initial evaluation used the federated ontology search for answer type checking

in question answering. The results of the evaluation show that it is possible to obtain

results that outperform querying ontologies independently in both precision and recall.

Solutions to additional problems in querying multiple ontologies such as concept

identification and ontology selection will be provided using string and structural

similarity measures. We propose the creation of an evaluation framework using the

question and answer sets in the TREC evaluations to account for a wider set of

ontological operations.

1. PROBLEM STATEMENT .. 1

1.1. MOTIVATION.. 1
1.2. MOTIVATING EXAMPLE.. 3

1.2.1. Question Answering.. 4
1.2.2. Example 1 ... 4

1.3. THESIS STATEMENT ... 9
1.4. EXPECTED CONTRIBUTIONS ... 9
1.5. DOCUMENT STRUCTURE .. 10

2. RELATED RESEARCH .. 11

2.1. ONTOLOGY SELECTION .. 11
2.2. ONTOLOGY MAPPING... 12
2.3. ONTOLOGY EVALUATION... 14

3. METHODOLOGY ... 15

3.1. BASIC DEFINITIONS.. 15
3.1.1. Ontologies and Graphs... 15
3.1.2. Query .. 16
3.1.3. Result .. 16

3.2. ONTOLOGICAL SEARCH.. 17
3.2.1. Operators.. 18
3.2.2. Query .. 22
3.2.3. Resource Description and Selection ... 24
3.2.4. Merging .. 25
3.2.5. Scoring Results ... 30

3.3. KNOWN ISSUES WITH CURRENT WORK ... 31
3.3.1. Identification of the correct concepts and relations in ontologies.. 31
3.3.2. Concept and edge similarity between concepts in different ontologies 32
3.3.3. Chains of indirect inference.. 32
3.3.4. Insensitivity in Boosting graphs of different structural properties 32

4. PRELIMINARY RESULTS .. 33

4.1.1. Type Checking .. 33
4.1.2. Experimental Setup... 33
4.1.3. Results and Analysis ... 34

5. ROADMAP.. 36

5.1. THESIS SCOPE .. 36
5.2. RESEARCH ACTIVITIES ... 37

5.2.1. Graph Matching ... 37
5.2.2. Ontological Metadata... 38
5.2.3. Query and Resource Description.. 39
5.2.4. Resource Selection.. 40
5.2.5. Result Merging ... 42
5.2.6. Result Scoring... 42

5.3. EVALUATION.. 43
5.3.1. Factoid TREC QA Task .. 43
5.3.2. Possible evaluation tasks.. 44
5.3.3. Condition of Success... 45

5.4. TIMETABLE .. 46

6. REFERENCES.. 47

1

1. Problem Statement

1.1. Motivation

Although several Ontology definitions co-exist [Guarino, 1998], an Ontology can be

defined as a model that represents a domain and is used to reason about objects in that

domain and the relations between them. It is usually composed of concepts, relations

between those concepts, concept properties and instances. Within the scope of this work

we consider taxonomies, semantic nets [Quillian, 1967] and lexical resources such as

Wordnet [Miller, 1995] as ontologies. The use of ontologies is now widespread in areas

as diverse as biomedical research, information extraction and knowledge engineering and

management.

In the last decades the number of available ontologies has grown considerably. Several

proprietary and open-domain ontologies such as Cyc [Lenat, 1995], SUMO [Niles and

Pease, 2001], Omega [Philpot, et al., 2003], Scone [Fahlman, 2005], ThoughtTreasure

[Mueller, 1997], Wordnet [Miller, 1995], VerbNet [Schuler, 2003], Framenet [Baker, et

al., 1998] and Propbank [Kingsbury and Palmer, 2002] have become available. Swoogle

[Ding, et al., 2004] has now indexed more than 10 000 ontologies. These resources offer

the promise of easily-accessible, open-domain ontological information, but the existence

of such diverse ontologies raises the issue of information merging and reuse. A

comparison of the ontologies reveals both redundant and complementary coverage, but

the variety of frameworks and languages used for ontology development makes it a

challenge to merge query results from different ontologies. The number of available

languages for ontological knowledge engineering such as RDF, OWL, DAML+OIL and

CYCL, combined with the existence of independent interfaces aggravates the issue. The

lack of a formal way to access and combine the knowledge from different ontologies is

an obstacle to more effective re-use and combination of these resources.

One approach to the multi-ontology issue is to absorb all the knowledge into a common

ontology ahead of time. However this approach as several drawbacks, as defined in

2

[Klein, 2001; Serafini and Tamilin, 2005], such as (i) non-scabality, (ii) losing language

and reasoning specificity of distinct ontologies, (iii) losing privacy and autonomy of

ontological knowledge (iv) language level mismatches such as syntax mismatches,

differences in logical representation and different semantic primitives and (v) Ontology

level mismatches, such as difference in scope, coverage and granularity, making this

challenge thus far too daunting in practice. A second approach is to query more than one

ontology via different interfaces, and interpret the results of each ontology individually,

essentially moving the entire challenge from the ontology provider to the application

builder. A third approach is to build an ontological middleware level for only small

fragments of ontologies in an on-demand basis, that is:

• Query multiple ontologies and then merge the query results from multiple

knowledge base systems, much like Federated Search in information retrieval [Si

and Callan, 2005].

• Follow ontological chains and inferences across ontologies, using partial query

results from one ontology to query another. This is a more complex version of

cross-data-base joins, where the data schemas are sufficiently compatible.

Currently, the main approaches to a solution for these problems focus on ontology

integration, by creating a mapping between the concepts and relations of different

ontologies. Some cases, such as the Semantic Web project [Bemers-Lee, et al., 2001]

primarily rely on merging two ontologies by establishing a full mapping between them.

Some efforts have tried to produce a merged ontology automatically using a bottom-up

approach such as FCA-Merge [Stumme and Maedche, 2001]; most involve some degree

of semi-supervised mapping. Other approaches, such as the one taken by CYC, try to

absorb other ontologies into a single main ontology while maintaining coherence [Reed

and Lenat, 2002]. One disadvantage of these approaches is the prohibitive cost of

producing a mapping or absorbing an ontology, given their increasing scale and rate of

availability. Another disadvantage is that it is not always possible to establish a one-to-

one mapping between the concepts and relations in one ontology and the concepts and

relations in another. Furthermore, there is the problem of keeping the mappings updated

as the original ontologies evolve. A large number of available ontologies are considered

3

works in progress and are updated frequently, which implies a constant updating of any

mappings associated with those resources.

Most applications that use ontological information would benefit from an approach that

models the information need, queries the relevant ontologies and retrieves the best result

while providing a single unified interface to the client application. If we look to other

domains for inspiration on how to proceed, we can find a similar problem in the field of

Federated Search [Callan, 2000; Fryer, 2004]. Information Retrieval is usually based on a

single database model of text retrieval. But to cope with proprietary information spread

around the world in separate databases, distributed information retrieval explicitly models

multiple databases for text retrieval. Each database is queried independently, the results

are merged when possible and a new global ranking is established.

In the same fashion, we can model our ontologies as individual sources, construct a query

that describes the information need, query each ontology independently and merge the

results into one ranked list.

Using Federated Ontology Search we can parallelize query execution while respecting

the structure of the individual ontologies, taking advantage of both redundant and

complementary knowledge in the available ontologies to improve the overall

performance of the system.

1.2. Motivating Example

Although there are many applicable areas for this research, type checking in the factoid

QA domain is suitable to prove the utility of our approach. The advantages of this are

threefold. First, the application of this research in factoid QA can be well defined and the

ontological operations involved are conceptually clear but yet not trivial. Second, the

training and test data created for the TREC QA evaluations [Voorhees, 2003], consisting

of corpora, question sets and answers keys, provide the required evaluation material.

4

1.2.1. Question Answering

In Question Answering, the goal is to take a question in natural language and provide an

answer also in natural language. In the JAVELIN I question answering system [Nyberg,

et al., 2003] a set of modules is used, specifically the Question Analyzer (QA) module,

which analyzes the question; the Retrieval Strategist (RS) modules, which retrieves the

relevant documents; the Information Extractor (IX) module, which analyzes the

documents retrieved by the RS and provides candidate answers; and finally the Answer

Generator (AG) module which analyzes the candidate answers and generates a final

ranked list of answers. Ontological information is typically used within JAVELIN to

determine the relation between the expected answer type and the candidate answers or to

provide answer verification, if the answer can be found directly in an available

ontological resource [Ko, et al., 2006].

1.2.2. Example 1

For this example let’s assume that we have access to the following ontologies

Ontology
CYC

Wordnet

U.S. Gazetteer

Table 1 - Available Ontologies for example 1

Let’s consider the question: What is the largest city in Germany?

Part of the QA module’s responsibilities in analyzing the question is to determine,

amongst other things, the type of answer we are expecting and the constraints on that

answer. In this case the QA module determined that the type of answer is location with

an additional constraint that the answer must be a city. Table 2 shows a partial output

from the QA and Table 3 shows Javelin’s output.

5

Question What is the largest city in Germany

Answer Type location

Subtype Constraint city

Table 2 – Output of the Question Analyzer. We can see the constraints

expected in the answer.

AG output
Rank Answer Judgment

1 Italy Not a City

2 Berlin (Correct) Correct

3 Horten Incorrect

4 Norway Not a City

5 South Africa Not a City

6 Dusseldorf Incorrect

7 Spain Not a City

8 Moscow Incorrect

9 France Not a City

10 Swiss Not a City

11 London Incorrect

12 Oslo Incorrect

13 Cologne Incorrect

14 Pretoria Incorrect

Table 3 – Output of the Answer Generator

As we can see the correct answer is ranked second. Furthermore, the first ranked answer,

as well as several others, does not obey the constraints set by the QA module because it is

not a city. We need a way to enforce those constraints on the candidate answers. One

possibility is to use ontological knowledge to verify these constraints, but given that QA

is an open domain field, there is presently no one ontology with the adequate coverage.

Consider an example which illustrates the federated ontology search approach. The main

idea in this case is that we would submit each of the candidate answers along with the

answer type constraints for verification.

I will show the procedure for the first two answers in the ranked set. The rest of the

answers would proceed in similar fashion.

6

Constraints : city, location

a) Answer1 : Italy

a. The available ontologies are queried regarding if there is any relation

between Italy and city

b. The results are collected. Each result contains a confidence of the

correctness of the result as well as a source confidence

c. Merge and rank the results. When two results are merged, their

confidence is boosted

Wordnet CYC
U.S.

Gazetteer

Italy

Country

Location

Merging and Ranking

Confidence(R1) = x

R1

Italy

Country

Location

Confidence(R2) = y

R2

Italy

City

Location

Confidence(R3) = z

R3

Wordnet CYC U.S.

Gazetteer

relation(Italy,[city, location])?

7

d. Finally a ranked list is produced by the server and the highest ranking

answer is that Italy is a country rather than a city.

1

2

Italy

Country

Location

Confidence(R12) = xy

Italy

City

Location

Confidence(R3) = z

Rank Result

Italy

Country

Location

R1

Italy

Country

Location

Confidence(R2) = y

R2

Confidence(R1) = x

Italy

Country

Location

Confidence(R12) = xy

R12

Italy

City

Location

Confidence(R3) = z

R3

8

b) Answer 2: Berlin

a. Step a would be the same as before

b. The results are collected. Each result contains a confidence of the

correctness of the result as well as a source confidence

c. Merge and rank the results. When two results are merged, their

confidence is boosted.

Wordnet CYC
U.S.

Gazetteer

Berlin

City

Location

Merging and Ranking

Confidence(R1) = x

R1

Berlin

City

Location

Confidence(R2) = y

R2

Berlin

City

Location

Confidence(R3) = z

R3

Berlin

City

Location

R1

Berlin

City

Location

Confidence(R2) = y

R2

Confidence(R1) = x

Berlin

City

Location

Confidence(R12) = xyz

R123

Berlin

City

Location

Confidence(R3) = z

R3

9

d. Finally a ranked list is produced by the server shows Berlin as the only

answer

After applying this procedure to all the answers, Table 4 shows the final ranked list of

answers. We can see that the correct answer is now on top.

AG output

Rank Answer Judgment

2 Berlin (Correct) Correct

3 Horten Incorrect

6 Dusseldorf Incorrect

8 Moscow Incorrect

11 London Incorrect

12 Oslo Incorrect

13 Cologne Incorrect

14 Pretoria Incorrect

Table 4 – Output of the Answer Generator

1.3. Thesis Statement

Our hypothesis is that given a set of ontologies it is possible to use the combined

knowledge contained in those ontologies while maintaining the individual ontologies in a

distributed approach. This can be achieved by defining a set of elementary ontological

operations which allow for the creation of complex ontological queries through

composition of the simpler operations.

1.4. Expected Contributions

The proposed research is expected to contribute the following;

• A novel framework for ontology integration, including:

1

Berlin

City

Location

Confidence(R123) = xyz

Rank Result

10

o A novel ontology-independent query algorithm for ontologies.

o A merging algorithm for merging ontological results.

o A scoring metric for scoring merged results.

• A demonstration that it is possible to use multiple ontologies while keeping them

independent.

• A similarity metric for ontological results.

• A task-based evaluation task for ontologies, as well as suitable data set.

1.5. Document Structure

The rest of the document is organized as follows. Chapter 2 surveys the current literature

on the relevant subjects. Chapter 3 describes the methodology used and the preliminary

results conducted so far to determine the feasibility of our approach. In Chapter 4 we

describe the planned experiments to demonstrate our claims and the proposed evaluation

of those experiments. At the end of chapter 4 we describe the expected timetable for the

thesis work.

11

2. Related Research
This work intersects with many areas of research, it is impossible to be exhaustive when

describing related research given the quantity of relevant works. We will address some of

the most salient works in each area of interest and try to given an overview of the

different methods that are relevant to the proposed approach.

2.1. Ontology Selection

Ontology selection deals with the selection of an ontology given a query. SWOOGLE

[Ding, et al., 2004] uses traditional Information Retrieval techniques to retrieve semantic

web documents (SWD), specifically character based N-Grams, n-character segments of

the text which spans inter-word boundaries, or URIrefs as keywords. The system indexes

ontologies primarily designed with the OWL language which supplies by design a set of

metadata which is extremely useful for identification of the SWD. Since the words are

usually compounded into URIref terms, this N-Gram approach is particularly efficient to

index and retrieve the SWD.

Link analysis is used in [Patel, et al., 2003; Zhang, et al., 2004] to rank ontologies in

respect to queries in the OntoSearch system and in the OntoKhoj system. Alani and

Brewster in [Alani and Brewster, 2005] create the AKTIVERANK algorithm, aggregate a

number of measures that look into the structural features of concepts such as concept

similarity and structural density.

Necessary to the task of ontology selection is the subtask or concept identification, where

the concepts in the query are identified in the ontologies. Resnik in [Resnik, 1995] uses

information content, as defined in [Ross, 1976], to determine the semantic similarity of

two concepts, the author restricts himself to the use of is-a relations to calculate the

concept similarity. Jiang and Conrath [Jiang and Conrath, 1997] combines a lexical

taxonomy with corpus statistical information to measure semantic similarity between

words and concepts.

12

2.2. Ontology Mapping

Although work as been done in ontology integration such as [Reed and Lenat, 2002] and

[Hovy, et al., 2003], where the goal is to incorporate several ontologies into one larger

ontology, recently the focus seems to be in ontology mapping.

Stumme and Maedche in [Stumme and Maedche, 2001] based their work on the work of

Ganter and Wille’s [Ganter and Wille, 1997] work on formal concept analysis. Their

method, the FCA-Merge is semi-automatic method for merging ontologies that uses

natural language techniques to derive a lattice of concepts which is then explored by a

knowledge engineer. The FCA-Merge assumes that a corpus relevant to both ontologies

to be merged is available and relies on the availability of classified instances in those

ontologies.

Using the Barwise-Seligman theory of information flow [Barwise and Seligman, 1997],

Kalfoglou and Shorlemmer [Kalfoglou and Schorlemmer, 2002] created the IF-MAP

method, a method for automatic ontology mapping. IF-Map generates a logic

infomorphism given two ontologies. This method relies on a partial translation from the

source ontologies to horn clauses, which is then used to discover the infomorphisms, if

any. The result is stored for future reference.

Ontology mapping and alignment has been tackled by Noy and Musen through the

creation of several tools that work as plug-ins for the open-source Protégé-2000 ontology

editor [Grosso, et al., 1999]. The first tool was SMART [Noy and Musen, 1999],

followed by PROMPT [Noy and Musen, 2000] and PROMPTDIFF [Noy and Musen,

2002] . The tools use linguistic similarity metrics for matching concepts. The authors

claim that PROMPT not only uses linguistic similarity but also the similarities of the

surrounding structures of the concepts to be merged. A set of heuristics is then applied to

the performed the merging procedure. The PROMPT tool, as well as Chimaera

[McGuinness, et al., 2000], provide semi-automatic guidance for the knowledge engineer.

Similarly the SHOE system [Heflin, et al., 2003] provides with a set of heuristics

13

designed to align ontologies, offering the user a set of suggestions regarding ambiguous

concepts.

Another approach is to use machine learning to develop a mapping between ontologies,

examples of this kind of approach are given by Lacher and Groh [Lacher and Groh, 2001],

with the CAIMAN system, Doan et. al. [Doan, et al., 2004], with the GLUE system, use a

set of practical similarity measures to indentify similar concepts. A Bayesian approach is

used by Prasad et. al. [Prasad, et al., 2002] for deciding between similarity comparisons.

OntoMorph [Chalupsky, 2000] presents a method for translation of symbolic knowledge,

integrated within the PowerLoom knowledge representation system [MacGregor, et al.,

1997]. Using syntactic rewriting through pattern matching, the author claims that the

potential of this translation system is adequate to handle complicated syntactic

transformations. Semantic rewriting is applied to conflate large classes of concepts.

DRAGO [Serafini and Tamilin, 2005] uses the peer-to-peer paradigm with Distributed

Description Logics to supply distributed reasoning services in multiple ontologies.

Within what the authors call the contextual reasoning paradigm, the authors propose a

distributed tableau algorithm to avoid the drawbacks of scalability and proprietary

information and is able to provide with a distributed verifiability capability. Piazza

[Halevy, et al., 2003] proposes a language based in XQuery [Boag, et al., 2002] that is

used to described semantic queries and that can be used with RDF style sources, although

primarily developed for XML. OBSERVER [Mena, et al., 2000] uses interontology

relationships such as synonyms, hyponyms and hypernyms to rewrite user queries to

obtain translations across ontologies.

A more extensive survey on the subject can be found in [Kalfoglou and Schorlemmer,

2003] and in [Noy, 2004].

14

2.3. Ontology Evaluation

The increase in the number of available ontologies demands the question of ontology

evaluation. Many approaches were taken on this issue. Two good reviews of different

approaches are given in [Brank, et al., 2005] and [Hartmann, et al., 2004].

Porsel and Malaka [Porzel and Malaka, 2004] use a task based evaluation approach to

evaluate ontologies. Given that an ontology will typically be used in some task, this

provides a direct comparison of two or more ontologies for that task. The problem with

this is that the range of tasks necessary to provide enough coverage for the typical

applications in which ontologies are used is very large, making impractical to use as a

generic evaluation metric. Yet given the diverse nature of the ontologies themselves, this

seems to be the only feasible method at times.

The OntoMetric approach [Lozano-Tello, et al., 2004] establishes a set of processes a

user should follow, given the specific system requirements, to evaluate different

ontologies. The OntoMetric system uses a set of 160 characteristics based in features

such as the content represented in the ontology, the ontology language, the methodology

used to develop the ontology, the costs of using the ontology in the system and the

software environment used.

Maedche and Staab [Maedche and Staab, 2002] use a gold standard to which they

compare the ontology to evaluate. A data driven approach is used in [Brewster, et al.,

2004], where the authors use latent semantic analysis to compare a set of concepts from a

domain specific corpus and a set of concepts in the ontology, determining a fit between

the two sets.

15

3. Methodology

Federated Search identifies four key areas of research for a problem solution. We will

show that the same problems apply in the area of Federated Ontology Search:

• Resource Selection

• Query Execution

• Result Merging

• Result Ranking

Before we consider each of these topics, we must establish some basic definitions

3.1. Basic Definitions

3.1.1. Ontologies and Graphs

Although there is no consensual definition of ontology, a good start comes from G.

Stumme and A. Maedche (Stumme and Maedche, 2001). The authors claim that most

ontologies share a few common items such as

• Concepts, a hierarchical IS-A relation and further relations.

• Some ontologies have constraints, functions or axioms

For the purposes of our research, an ontology can be as simple as a semantic network

[Quillian, 1967], where no distinction is made between concepts and instances, and the

only relation possible is of the is-a type, or as complex as CYC [Lenat, 1995], with a

clear distinction between concepts and instances, where multiple inheritance is allowed

and there is an extremely reach set of possible relations.

A basic ontology definition could given by a tuple O:= (C; is a; R), where C is a set

whose elements are called concepts, is a establishes a partial order on C and R is a set

whose elements are called relation names. An example is given below.

16

Figure 1 - an example of a basic ontology

A graph definition could be given by G = (V,E) where V is the set of vertices and E is

the set of edges. An example is given below.

Figure 2 - A graph structure

Given the two definitions one can see that graphs fit the basic structure of ontologies very

well. Vertices are considered concepts, Labeled edges as relations.

3.1.2. Query

A query is a request for information from the set of existing ontologies. It is comprised of

operators, as defined in section 3.2.1.

3.1.3. Result

A Result is the rooted directed acyclic graph (RDAG) that results from executing a query.

bird vertebrate

animal

sparrow

hen

is a

is a

hyponym

synonym

hyponym

v1

v2

v3

v4

v5

e1

e3

e2

e4

e5

17

3.2. Ontological Search

The success of the proposed approach hinges on the definition of a search method that is

independent of any ontology. For this purpose we introduce the concept of operator and a

concept of query based on operators. The main purpose of an operator is to decouple the

search process from the information need. Instead of describing a complete semantic

framework, the goal is to describe the information request in terms of a decomposable

query that can be transformed into a set of operators. This would provide an elegant

abstraction from the formal representations implemented by our ontological sources,

allowing each operator to be an independent request.

As an example, Figure 3 shows the execution of the query children(car). This query uses

the children operator to get all the children of the concept car.

Figure 3 - Query Execution

The query is interpreted and performed in each ontology separately. The results are then

merged and a final list is ranked according to the scoring algorithm. The final set of

results is then returned.

Wordnet Thought

Treasure

Federated Ontology
Search Engine

car

coupe cab

0.8 0.8

R1

children(car)

car

cab cruiser

0.9 0.9

R2

merge

children

0.8 0.9

car

cab cruiser coupe
0.98

R12

scoring

algorithm
coupe

cab

cruiser

0.85

result

query

children

18

It is important to note that by defining a set of operators we are in fact delegating

responsibility for their execution to the ontologies themselves, therefore making no

restrictions on whatever processes are executed in order to obtain the necessary

information. This means that operators can be implemented using extended features of

ontologies (e.g. inference, grounding, restrictions and theorem-provers). The only

constraint is that the output of each query execution is a Rooted Directed Acyclic Graph

(RDAG).

Next I will give a description of a few possible basic operators as an example. These

operators form the base for my experiments, but not a final set of operators, since

defining a set of operators is one of the goals of this thesis. Following that I will describe

the concept of query within this context and finally I will address the problems of

resource selection, merging and results scoring in detail.

3.2.1. Operators

An atomic operator is an atomic search operation on an ontology. It takes as input a graph

and produces a ranked list of graphs as output. An operator is defined as an operation on

op(g): g � g’, where g, g’ is a RDAG

We now define a set preliminary set of operators used in the current evaluations. By no

means does this constitute the base set of operators, necessary to represent the basic

ontology operations. That is subject of further research.

3.2.1.1. children operator

The children operator takes a graph g as input and expands each concept in g to the set of

children concepts. Currently defined as

19

3.2.1.1.1. Base Case

In base case let’s look at an example where the set of vertices of g, V(g) = 1, that is, the

graph is comprised of one concept.

Query : #children(g)

Figure 4 – Base case for children operator

As we can see the base case expands one concept into a set of concepts, but what happens

when we apply this operator to a set of concepts?

3.2.1.1.2. Complex Case

In this case each concept in g is extended to the set of similar concepts

Query : #children(g)

car
car

van

coupe

sedan

taxi

g

g'

20

Figure 5 – Complex case for children operator

3.2.1.2. relation operator

#rel(g1, g2,[r1,r2 … rn])

The relation operator takes g and for each of it’s concepts tries to find the relationship to

each of the concepts in g’ using the relations r1 to rn. If no relations are specified, then all

relations are considered.

Example : #rel(car, vehicle,[is_a])

Figure 6 – relation operator

car

car

motor

vehicle

vehicle

vehicle g1

g'

is_a is_a

g2

car

car

van

sedan

coupe

taxi

vehicle

vehicle

truck airplane

g

g'

21

3.2.1.3. and operator

#and(g1,g2)

The and operator represents the intersection operation. It takes g1 and g2 and return g’

where g’ is the intersection of the two.

Example

Figure 7 – and operator

3.2.1.4. or operator

#or(g1,g2)

The or operator represents the intersection operation. It takes g1 and g2 and return g’

where g’ is the union of the g1 and g2. This operator does not apply boosting. Given two

similar edges one of the edge is picked arbitrarily.

Example

car

machine auto

g'

car

automobile auto

car

auto

g1 g2

22

Figure 8 – or operator

3.2.2. Query

The general execution of a query is described as follows. First we select the appropriate

ontologies. Second, we query the selected resources. Third we merge the results

according to a graph merging algorithm. Finally we rank the results according to a

confidence estimation algorithm.

A query operation is composed of atomic operators and Boolean operators. Each query is

reduced to a linear sequence of atomic operators.

#rel(#sim(lymphoma),cancer)

Query 1 : #sim(lymphoma) � g

Query 2 : #rel(g,cancer) � g1

car

machine auto

g'

car

automobile auto

car

auto

g1 g2

automobile machine

23

Each of the atomic operators is considered an atomic query and performed on the selected

resources

Figure 9 – Diagram showing the execution steps of an operator

3.2.2.1. Query Results

A query result is a set of Rooted Directed Acyclic Graphs (RGAD). The graph contains

labeled edges and attributes are modeled as relations. Each edge contains a confidence

associated with it. This confidences expresses the confidence of the source in the relation.

Example

O2 O3 O4 O5 O6 O1

query
Ro31

Ro32

Ro33

Ro51

Ro52

Ranking
Algorithm

Ro52

Ro32

Ro3o53

Ro32

Ro52

Ro32

Ro3o53

Ro32

0.9

0.8

0.7

0.6

Final Result Set

car

auto machine

similar, 0.9 similar, 0.8

24

3.2.3. Resource Description and Selection

3.2.3.1. Resource Description

The increasing trend in the availability of resources suggests that often we will be able to

find overlapping sources for a given query. At the same time, some resources will be very

domain oriented which brings up the problem of resource description and selection.

Ideally we would like to be able to select the resources to query in order to maximize the

probability of success. We would like to model the success of a query given an ontology.

We must consider two cases, similar to the situation in information retrieval, cooperative

and uncooperative resources [Si and Callan, 2005].

A cooperative source is a source whose knowledge is fully available for querying and

indexing. In many cases though, it’s not realistic and maybe not even desirable to expect

cooperative sources. The proprietary content in some ontologies might not be made

available by its authors, or perhaps part of the ontology might be available, with filters to

control access to the information contained in such ontology. Examples of this can be

taken from Cyc, which releases OpenCyc as a free smaller portion of the knowledge

contained in the full Cyc. Although at this moment they are separate entities, one could

conceive of a controlled access paradigm. We must also consider cases where the

ontology has incorporated inference engines and logic mechanisms, the use of which is

advantageous and important. Therefore, it is in our interest to evaluate the contents in

terms of the produced results, rather than the information contained in the ontology.

For an example of the importance of this resource description, we can look to our

example in 1.2.2., where selecting the wrong resource would lead to wrong results,

Where without an adequate resource description, it will be extremely hard to differentiate

between expert and non-expert sources.

One possible approach to resource description is to formulate a set of random queries that

determine the content of the ontology to be queried. One obvious challenge in this

25

approach is the creation of such queries. Given the structured nature of ontological

resources, automatic extraction of queries from a test corpus becomes increasingly hard.

Another possible approach is to apply proximity models, where each result is judged

regarding how close is to the other results. A commonsense result is built by taking the

average of the results returned and the difference is measured for each result. This will

not tell us the expertise of the ontology, but will give us a sense of how disparate each

ontology is from the norm. This would provide a relative measure of ontology description.

3.2.3.2. Resource Selection

Resource selection refers to the selection of the most appropriate set of ontologies for a

given query. The key issues in this task are the identification of concepts in ontologies

and the matching of an ontology description with a query.

The problem of identifying concepts in ontologies is particularly vital given that although

we typically have strings representing the concepts in the query these are usually not

enough to eliminate ambiguity. Furthermore, the concepts in ontologies may be

polymorphic, having multiple literal representations. This problem increases when we

consider the use of multilingual ontologies, where the concepts are represented in several

totally different languages. The use of ontologies in different languages would lead to

necessity of a distance metric specifically tuned to multilingual issues.

3.2.4. Merging

One advantage of this approach is that rather than trying to merge two entire ontologies,

we merge only the results. This significantly reduces the problem of merging ambiguous

concepts given that queries are grounded in a query concept and therefore only relations

that apply to the concept in the query are returned. Polysemic concepts will be explicitly

modeled via separate results, with a variable confidence on the relations contained in

each result.

26

The structured nature of the query results implies that the result merging problem in the

ontology domain is very different from result merging in federated text search, where the

results typically consist of unstructured data. In the case of Ontology Search the results

are graphs, which allow us to treat merging as an instance of Inexact Graph Merging.

While one of the goals of merging in Federated Search is to eliminate duplicates, the

primary goal of merging in ontology search is to find complementary information. The

goal of ranking in ontology search is to produce, at the top-ranked position, the most

complete and accurate result. Generally speaking, we want to merge two results if they

represent information about the same concepts, thus creating a more complete result.

As an example, let us consider three distinct ontologies, O1, O2 and O3. Let us assume

that we execute the query sim(bank), with the purposes of finding concepts similar to

bank. Imagine that ontology O1 and O2 both interpret bank as river_bank while ontology

O3 interprets bank as money_bank. Given this scenario, we would like the result set to

contain two results, one referring to the similar concepts of river_bank and the other to

the similar concepts of money_bank. The results from O1 and O2 should be merged since

that is likely to yield an increase in the quantity of information contained in the result, as

well as the confidence in the concepts common to the two results.

The problem can be formulated as follows. Given two RDAGs g1 and g2 we want to

merge the two graphs if they are similar. Typically this is done by considering one of two

options, either we measure the similarity between the graphs or measure the difference.

But in our case we not only want to measure the similarity but also find the maximum

common subgraph. We should look to the science of Inexact Graph Matching for

guidance here.

Inexact Graph Matching occurs when we do not expect to find an isomorphism between

the two graphs to be merged. This is one of the most complex problems in computer

vision [Bienenstock & Malsburg, 1987] and is also an important part of chemical

similarity searching [Raymond et al., 2002]. More specifically, inexact graph matching is

proven to be an NP-Complete problem [Abdulkader, 1998].

In the next section we will discuss graph similarity.

27

3.2.4.1. Graph Similarity

Graph similarity Distance [A. Sanfeliu & K. Fu, 1981] is typically calculated in one of

the following ways: Cost Based Distance, Feature Based Distance or Maximum Common

Subgraph.

Cost Based Distance is based on edit operations on the graph, typically add nodes or

edges, remove nodes or edges and re-label nodes or edges, where each operation is

associated with a cost. Given two graphs g1 and g2, the edit distance between g1 and g2 is

the minimum number of edit operations necessary to transform g1 into g2.

Feature based distances use a set of invariants established from the graph structural

description, using these features in a vector representation to which we then apply

distance or similarity measures.

The goal of the Maximum Common Subgraph approach is to find the largest Subgraph

common to both g1 and g2. To address this requirement, current approaches use the

concept of maximum clique detection, or the concept of maximally connected sub graphs.

Given the NP complete nature of the problem, the problem is then changed into finding

the Maximum Common Edge Subgraph, which focuses on finding graphs with the

maximum number of edges. In our case we use a variation of the overlapping coefficient

for graphs, a measure whereby if graph g contains g’ or the converse then the similarity

coefficient is a full match.

3.2.4.1.1. Localized Boosting Algorithm

As stated before, Inexact Graph Matching is an NP complete problem. In order to tackle

this problem, we take advantage of the fact that our graphs are RDAG’s to reduce the

complexity of the problem. The goal here is to create a set of tuples that will be the basis

for comparison of the two graphs.

28

Given g1 and g2 as results of a query, the algorithm is as follows. After applying a

screening procedure to determine the upper bound on similarity, as defined in [Raymond,

et al., 2002], we are left with graphs where sim(g1,g2) > T, that is, graphs where the

similarity between g1 and g2 is above a certain threshold T, defined in the screening

procedure. The screening procedure produces a subgraph that for each graph given,

which means that we now basically want to determine g1 ∩ g2 for which we will apply

localized boosting and then add the nodes and edges that were previously discarded.

The basic intuition behind the confidence boosting is that the confidence of the edges is

boosted whenever two edges are merged. The boosting is determined through the use of

the Soft Or, given by the formula:

The motivation of using Soft Or to determine the boosting is that this gives us a smooth

boosting curve with an upper bound of 1.

E.g. A = 0.8, B = 0.7, Result = 1-(1-0.8)(1-0.7) = 1-(0.2 x 0.3) = 0.94

In order to apply confidence boosting we apply the concept of tuples, where tx = (cx,cy,r)

is a tuple, cx,cy are concepts and r is a relation.

First we split g1 and g2 into tuples tx = (cx,cy,r), cx,cy,r ∈ g, such that cx and cr are adjacent

and r(cx,cy). We then compare the sets of tuples from g1 and g2 and if sim(tx,ty)>T then we

boost the confidence of tx.

.

An example is given in Figure 10

∏ −−
i

ic)1(1

29

Figure 10 – Localized Boosting Algorithm

3.2.4.1.2. Tuple Similarity

Tuple similarity measures are based on the linear combination of the edge similarity

measure and the concept similarity measure.

When comparing concepts or relations, we use the Q-Gram distance on the strings that

represent them [Gravano et al., 2001]. A q-gram is character based N-Gram measure. The

intuition behind the use of q-grams as a foundation for distance metric is that when two

strings s1 and s2 are within a small edit distance of each other, they share a large number

of q-grams in common. This metric is fairly robust to orthographic errors, morphological

errors and compound words, which makes it suitable for our purposes.

The similarity between two tuples is given by the minimum similarity of the concepts and

relations contained in the tuples. Formally

car

auto automobile

similar, 0.6
car

auto machine

g1 g2

similar, 0.7 similar, 0.5 similar, 0.7

car
auto

similar, 0.7
car

auto

similar, 0.7

t1 t2

car
auto

similar, 0.91

t1’

30

3.2.5. Scoring Results

A result is scored in a compositional manner, by scoring the outcome of each operator

used in a query individually before calculating the final score. A ranking will be

computed from the scores of the results thus making the computation of the ranking score

a key issue, much like in traditional Information Retrieval.

An operator can be either recall centric or precision centric. Operators that focus on recall

will typically return results with as much information as possible. The similarity operator,

for example, returns all the synonyms associated with a concept, the more synonyms the

better the result should be, all else being equal. Operators that focus on precision will

usually return chains of associations. They focus on precision of the relations. As an

example, the relation operator finds the relation between two concepts. All else being

equal, a direct relation would be better than a long chain of relations.

When a result is merged from two other results, the confidence in the sources from which

the results were extracted is combined using the soft or rule, as described before. We now

present two scoring metrics, to be used by precision type operators and recall type

operators respectively.

3.2.5.1. Precision scoring metric

The goal of this scoring metric is to give preference to shorter graph lengths. Given that

this metric is used for precision type operators, it is desirable to have results with short

chains.









=

),(

),(

),(

min),(22

11

yx

yx

yx

yx

rrsim

ccsim

ccsim

ttsim

()()22
_

)(

)(
lenghtavg

c

CrS i

ei

s

∏
=

31

Where cs is the confidence of the source, ce is the confidence on the edge and avg_length

is the average distance of the paths contained in the graph, from root to leaf node. The 4
th

power was empirically determined to give an adequate curve to the confidence decrease.

3.2.5.2. Recall scoring metric

The recall scoring metric gives preference to graphs with large node degrees. Given that

this metric is used by recall type operators, we want the score to increase with the

quantity of diverse information contained in the graph. Thus

Where avg_degree is the average degree of the nodes contained in the result.

3.3. Known Issues with current work

The research work in this thesis is driven by a set of problems that are yet to be solved

satisfactorily. Although this is not a complete enumeration of such problems, it represents

the set of prominent problems at this stage. These constitute the focal points of the

proposed research and will be addressed by it.

3.3.1. Identification of the correct concepts and relations in ontologies

String based comparison, currently the method used, is not adequate to deal with the

phenomenon of polymorphic concepts, abundantly present in many ontologies as well as

polisemic strings. The necessity of limiting ambiguity and identifying the correct

concepts and relations requires an approach that takes into account more than just unique

tokens, indicating that some notion of context must be present.

()() ∏×













−×=

i

eis c
reeavg

CrS)(
deg_

1
1)(

22

32

3.3.2. Concept and edge similarity between concepts in different

ontologies

The identification of concept and edge similarity, currently done using string similarity

metrics, is insensitive to the polymorphic problem, as mentioned before. Furthermore the

issue of ontologies in different languages exacerbates the problem considerably. Intuition

suggests that viable approaches should include topologic similarity as well as string

similarity. This amounts to comparing contexts to define concept and edge similarity.

3.3.3. Chains of indirect inference

A chain of indirect inference is a chain in which parts come from different ontologies,

that is, an inference chain that goes from A to B, where A exists one ontology and B

exists in a different ontology. Chains of indirect inference reduce the reliability in the

results. One of the factors seems to be the increase in error when unifying concepts in

two different ontologies. In order to take advantage of multiple ontologies for indirect

knowledge the unification of concepts must be restricted to highly compatible concepts.

3.3.4. Insensitivity in Boosting graphs of different structural properties

When two results inherently represent the same information but their structure differs, the

current boosting algorithm tends to incorrectly assign the boost in confidence in equal

amounts to all partial paths. Research in identifying the correct partial paths to apply

boosting is a challenging problem to be addressed in this thesis.

33

4. Preliminary Results
In this section we present some retrieval experiments using the federated approach to

ontologies. One possible evaluation of the proposed approach requires a task centered

evaluation process (Porzel and Malaka, 2004). Unfortunately at this time there are no

existing standard procedures and test sets for ontologies, which forced us to create our

own. For this reason we are unable to provide results comparing our system with other

similar systems. Similar to the experiment performed by the mentioned authors, we

selected the task of type checking, described below.

4.1.1. Type Checking

The task of type checking tries to determine if, given a type T and a concept C, C is of

type T. In the case of the federated approach, we can achieve this by using three operators,

the relation operator, the parents operator and the children operator, as previously

described.

Type checking using federated ontology search can be viewed as the task of finding an is-

a based path between two concepts. Our approach has the advantage of using indirect

paths when no direct path is found. An indirect path consists of partial ordered sub paths

that exist in separate ontologies but form one path when combined. Finding an indirect

path is possible by simply applying either the parents operator or the children operator to

the source node in one ontology and using the resulting nodes to query for a direct path in

another ontology. The resulting path is the combination of these partial paths. Using

indirect paths provides a promising way of combining information that by itself would be

incomplete and enabling the deduction of previously non-existent paths.

4.1.2. Experimental Setup

A total of 9558 pairs were extracted from results of the Javelin question answering

system in TREC QA 2003 [Nyberg et al., 2003]. Each pair consists of the expected

answer type or subtype and the candidate answer.

34

 For the purposes of our evaluation we used two of the currently available

ontologies, Wordnet and ThoughtTreasure. The purpose of this preliminary evaluation is

to contrast the performance of each of the ontologies individually, which would be a

typical scenario for a project using one ontology as a knowledge base, with the

performance of the set of ontologies using a federated approach.

 We have evaluated the recall and precision of the retrieved results..

4.1.3. Results and Analysis

 Table 1 shows the recall after running the test set with different configurations.

Configuration Recall

Wordnet 4278 (44.7%)

ThoughtTreasure 730 (7.6%)

Combined 4686 (49%)

Merge 4686 (49%)

Merging + Indirect 6870 (71.8%)

Test size 9558
Table 1: Recall using different configurations with the full set of pairs

Wordnet and ThoughtTreasure were experiments where Wordnet and ThoughtTreasure

were used individually. The Combined experiment queried each of the ontologies

individually, picking only the top ranked result. The recall is lower than the direct sum of

the individual results due to knowledge overlap in the ontologies. The Merge experiment

queries both ontologies but merges the results using the merging algorithm described

previously. Finally we use merging as well as indirect path query to perform the last

experiment

An indirect path is a path that is comprised of partial paths contained in different

ontologies, as shown below.

35

Although the recall remained the same when applying the merging procedure, the

average confidence of the top result, in cases where there was more than one result,

increased significantly (28%), as shown in Table 2.

 avg. confidence

Without merging 0.72
With merging 0.93

increase 28.7%
Table 2 – The Increase in the average confidence of the top ranked result due to the merging algorithm.

In order to test the accuracy of the federated approach, we created a gold standard for a

subset of the full set of pairs. Using random sampling, we selected 1300 pairs, which we

then proceeded to judge manually. For each pair in the gold standard subset we generated

a tuple of the form (type, concept, judgment), where judgment reflects if the concept is of

the type type.

We compared the answers of the Federated Search with the gold standard by applying a

variation on the result score threshold. If a score is below the threshold then the concept

is considered not to be of the type type.

a

b

c

d

e

x

b

z

a b z

Indirect path

Ontology A Ontology B

36

 Precision Recall F1 Measure

Combined (W+T) 0.59 0.49 0.53

FOS (M+I) 0.67 0.71 0.69

Increase 30.18%

Table 3 – Precision and recall of the Federated System using Wordnet and ThoughtTreasure

We obtained a significant increase in performance when using the federated search

approach. The optimal threshold for this experiment is T=0.1 with a precision of P =

0.676. The recall was very close to the one obtained in the full set with a recall of 0.71

(71%). Below we can see the F-Measure of the system.

5. Roadmap

5.1. Thesis Scope

Research Topic Research Question Contributions to the field Possible Answer

Query Description

Operator Set

What is the set of

basic operations in

an ontology

General operator set that

described the set of basic

ontological operations

Creation of a basic

operator set through

literature review

Resource Description

Ontology Description

What are the areas of

expertise of a given

ontology

Set of features for resource

description

Creation of set of

queries to determine

areas of expertise

Resource Selection

Concept Matching

How to match

concepts in the

query, described by

strings to concepts in

the ontology

Methodology for selecting

matching concepts in

ontologies given a query

description

Definition of context

for ontology querying

Fitness of an ontology given

a query

How to determine

how good is an

ontology given a

certain query

Algorithm for determining

ontology fitness given a

query

Usage of the

determined areas and

with conjunction with

the context of the query

Result Merging

Result Similarity

How to determine

the similarity

between two results

Use the combination of

concept and edge

similarity with

- Edge similarity

How to determine

the similarity

between two edges

- Concept Similarity How to determine

the similarity

Algorithm for determining

result similarity and for

merging results

Use topological

similarity, string

similarity and property

coherence (monotonic,

reciprocal, etc..) for

37

between two

concepts

determination of

similarities

Result Boosting

What is the correct

way to boost the

results?

Use spread boost taking

into account the

properties of the

ontology itself

Result Scoring

Adequacy of Result

How well does the

result answer the

query (quantity of

new information,

precision of new

information, etc)

Width vs. Breadth

Is it possible to

describe the results

in terms of quantity

and quality of

information?

Algorithm for Scoring

results.

Using Utility-based

metrics to boost the

score of the results

5.2. Research Activities

This research is comprised mostly of the four major tasks described in 5.1. We will

describe the activities in each task. The conclusion of these set of activities will lead to

the creation of a framework for integration and use of ontologies for NLP applications.

5.2.1. Graph Matching

Graph Matching is one of the key components of the proposed research. It heavily

influences both term matching and graph merging thus consisting of a fundamental focus

of this research. Besides other aspects covered throughout this proposal, one important

aspect is the definition of graph matching at three separate levels. At the structural level,

string level and meta level.

5.2.1.1. Structural Level Matching

Matching at the structural level involves analyzing and comparing the structure of both

graphs to be matched. This requires comparing branching factors, connectivity structure

of the graphs, edge number and position. This can be done by extrapolating existing

matching algorithms fine tuned to the purpose at hand.

38

5.2.1.2. String Level Matching

String level matching involves comparing information contained within nodes or

relations. This requires knowledge of the type of content we are comparing, given that

some type of content requires exact matching (e.g. dates, distances) while other requires

interval matching (E.g. weight of a whale can be from 5 to 50 tons). Besides string

matching using algorithms such as the Q-Grams algorithm, we can use structural

matching combined with string matching to identify synonyms.

5.2.1.3. Meta Level Matching

Metal Level matching refers to properties of the graph and its relations that are not

structural or string based. Properties like relation exclusivity (E.g. we can only have one

mother but we can have many siblings) force certain graphs to be incompatible due to

meta knowledge on the information contained in those graphs. We must not only match

the direct knowledge contained in the graphs, but also the inferred knowledge that can be

extracted from them.

5.2.2. Ontological Metadata

Given the diversity of ontological languages and the capabilities of expression that each

language possesses, we must encode ontological metadata information. The purpose of

this information is to help model the query performed in that ontology, as well as the

results returned. Information like which relations are available, what kinds of logical

structures are present and what inference mechanisms are active is necessary to correctly

query ontologies and process their results.

Some of the information that is required from the relations present in ontologies includes

information about whether a relation is transitive, unique, reflexive and associative,

amongst others. This suggests that some sort of relation algebra is required to effectively

describe relation interplay accurately.

39

5.2.3. Query and Resource Description

5.2.3.1. Creation of an operator set

Creation of an operator set that corresponds to the basic set of operations usually

performed in an ontology. Although the set of operators depends on the evaluation task, it

is possible to decompose the typical ontological operations in a set of basic operators,

using the current literature as a basis.

5.2.3.2. Development of a set of ontology queries for Ontology
Description

In order to describe an ontology, a set of queries suitable to querying different types of

ontologies must be created. This set of queries should come from various corpus, namely

the CNS corpus, the AQUAINT corpus, amongst others. A methodology should be

defined such that the extension of this query set becomes an easy task, possibly automatic,

given the degree of variability of coverage in ontological resources.

5.2.3.3. Extension of the operator set

The current operator set will be extended to include a subset of the operators supported

by SIRUP [Ziegler, et al., 2006]. Possible operators include

Operator Description

getConcept(name)
Given a name, return all the concepts

associated with it

getRelationSet(concept)
Retrieve the relations associated with a

given concept

getAttributes(concept) Retrieve the attributes of a given concept

fillGaps(graph g)
g is a graph with empty slots. Return the

graph structures that fill those empty slots

getInstances(concept) Retrieve the instances of a given concept

isConcept(conceptName)
returns true is the name corresponds to at

least one concept

isAttribute(attributeName)
Returns true in the attribute name

corresponds to at least one attribute

isSimilar(conceptA, conceptB) Returns true if concept A and concept B

40

are similar

getRelationedConcept(conceptA,[relationSet])

Returns the concepts related to conceptA

using relations contained in the

relationSet

5.2.3.4. Evaluation of query set for Ontology Description

This task consists of the evaluation of the results of the created query set. The evaluation

type is described further ahead.

5.2.4. Resource Selection

5.2.4.1. Definition of a query context

This task consists of the definition of what is a query context for an ontological query.

This should take into account the structured nature of ontologies such that the context

represents not only the set of concepts associated with the query term, but also the

relations that exist between the query term and the concepts in the context.

5.2.4.2. Matching the query terms

I propose to address two problems with my research work, synonym terms and homonym

terms.

5.2.4.2.1. Synonym Terms

Synonyms terms present a significant problem in term matching. Terms with very similar

meaning are frequently represented by different strings, a situation which leads to an

unsolved matching problem. We intend to leverage on the fact that we are using a

federated approach to address this problem.

The main idea is to use the graph structures of the returned results to query other

ontologies and find synonyms. By exploring the structure surrounding terms whose

41

strings can be matched we can identify terms that have different strings but relate with

the same surrounding term in the same way. An example is given below.

Let ‘s consider the following query children(car). Our goal is to match car with both car

and automobile.

Given the graph that results from querying ontology A, we can use the structure of that

result to query ontology B.

5.2.4.2.2. Homonym Terms

Given a query, this task is comprised of using the context defined in 5.2.2.1 to

disambiguate between homonym terms. Current possibilities consist of the inclusion in

the query of related words or sentences where the terms occur.

5.2.4.3. Creation of an algorithm for determining ontology fit

Given a query this task is comprised of the creation of an algorithm for the determining

the probability of success of querying an ontology given a query, or p(O,Q).

car

sedan minivan

is_a, 0.7 is_a, 0.6

Ontology A

Query : children(car)

sedan minivan

Ontology B

Query : fillGaps(g)

is_a is_a

g
automobile

sedan minivan

is_a is_a

g’

42

5.2.4.4. Evaluation of Resource Selection

This task consists of an evaluation of the algorithms for Resource Selection.

5.2.5. Result Merging

5.2.5.1. Experimentation with topological similarity, property
coherence and string similarity

This tasks consists of experiments using topological similarity, string similarity and

property coherence for determining the similarity of results.

5.2.5.2. Refinement of current boosting algorithm

The current boosting algorithm is not sensitive to structural differences in similar results;

this task consists of refining the current algorithm so that it is more robust and sensitive

to this situation.

5.2.5.3. Evaluation of Similarity measures and boosting algorithm

This consists of evaluating the similarity measures and boosting algorithm created in the

previous points.

5.2.6. Result Scoring

5.2.6.1. Definition of utility metric for determining the appropriateness
of the result given the query

This task consists of the creation of an utility metric that takes into account the

information need in the query to determine the goodness of the results in order to

influence the ranking.

5.2.6.2. Evaluation of the scoring metric

This task consists of the evaluation of the created scoring metric.

43

5.3. Evaluation

Different methods have been used to evaluate single ontology systems [Hartmann, et al.,

2004; Porzel and Malaka, 2004]. These methods address different ontological aspects,

namely coherence, coverage regarding a corpus, redundancy, amongst others. For our

case, given that we are not trying to evaluate the ontologies themselves, but their

combined use, we believe that a task based evaluation is the most suitable form of

evaluation. This means the use of the existing type checking task, but also the creation of

a different task for evaluation of the Federated Ontology System. We propose to perform

a task based on the TREC QA set of factoid questions as well as at least one other task.

5.3.1. Factoid TREC QA Task

 TREC QA set of factoid questions for evaluation of the proposed approach such as

suggested in [Lita, et al., 2004]. The reasons for this are the following

- The TREC QA questions have available answers and the methods to judge are

automatic and straightforward.

- The relations displayed in the TREC QA factoid questions represent a range

of relations whose coverage is wide enough to test large ontologies such as

Wordnet and ThoughtTreasure.

The Evaluation will address the precision and recall of the system, as well as key aspects

such as the impact that the different methods of merging and scoring have in the results

of the system. This will allow us to understand the factors at play in the federated system.

The goal of the evaluation is to take us beyond factoid question answering, since there in

lays the challenge to and greater benefit from the use of multiple ontologies.

The evaluation will consist of the following steps:

1) Selection of the set of ontologies to use in the evaluation. The set should be

comprised of ontologies in the number between 6 and 12.

a) Current ontologies considered

1 WordNet

44

2 Cyc Research

3 ThoughtTreasure

4 CNS ontology

5 Scone Ontology

6 SUMO ontology

7 Wikipedia derived ontology

8 OpenMind Ontology

9 MindNet Ontology

10 Omega Ontology

11 MultiNet Ontology

2) Creation of the set of necessary operators

3) A/B comparison of type-check task using the researched methods

4) Creation of a test set using TREC QA 2005 factoid questions. This includes queries

and answer sets.

5) A/B comparison of factoid QA task using the refined methods

a) Comparison of each individual ontology and the federated system

b) Comparison of the federated system with or without the merging algorithm

c) Comparison of the federated system

5.3.2. Possible evaluation tasks

5.3.2.1. Tagging Ontological Relations

 This task is similar to the task described in [Porzel and Malaka, 2004]. The goal is

to correctly tag the ontological relations that hold between ontologically equivalent

marked-up entities. This is similar to the task of identifying correct frames for labeled

verbs and arguments, presented in [Gildea and Jurafsky, 2002]. Some of the relevant

ontologies relevant to this task are Framenet, VerbNet and Propbank.

45

5.3.2.2. Image Labeling

 Given the recent advances in Human Computation [von Ahn and Dabbish, 2004],

it is likely that we will now have millions of labeled images. It would be interesting to

further label these images with ontological relations in order to increase the relational

density of the images and the quantity of labels. This way, we would be able to query for

animals and get images of dogs, cats, etc.

 In this case the purpose would to leverage on the large number of ontologies that

exist in ontology repositories and, although loosing some language diversity, benefit from

an experiment that is both orthogonal to the factoid QA and uses a significantly larger

number of ontologies.

5.3.2.3. Ontology Clustering

 The goal of Ontology clustering is to cluster ontologies based on topics. This

would allow, for example, determining commonsense regarding a concept using a set of

ontologies. In this task a list of topics is given and the goal is to associate ontologies with

each topic.

5.3.3. Condition of Success

We will have achieved success if the set of results can be sufficiently explained while

providing better task results than using an independent set of ontologies in the proposed

evaluation task.

46

5.4. Timetable

A tentative timetable is provided here. The expected completion of this thesis is

December of 2007

TASK Duration of task

Operator Set definition 15 days

Query Set Creation 1 month

Definition of a query context 15 days

Algorithms for concept matching 2 months

Evaluation of concept matching algorithms 1 month

Experiment with topological merging 1 month

Refinement of boosting algorithm 1 month

Evaluation of merging algorithm 1 month

Utility Based Ranking Algorithm 1 month

Evaluation of Ranking Algorithm 1 month

Final Task Based Evaluation 2 months

Thesis write up 3 months

47

6. References
[Alani and Brewster, 2005] H. Alani and C. Brewster, "Ontology ranking based on the

analysis of concept structures," Proceedings of the 3rd international conference

on Knowledge capture, pp. 51-58, 2005.

[Baker, et al., 1998] C. F. Baker, C. J. Fillmore, and J. B. Lowe, "The Berkeley

FrameNet project," Proceedings of COLING-ACL, vol. 98, 1998.

[Barwise and Seligman, 1997] J. Barwise and J. Seligman, Information flow: the

logic of distributed systems: Cambridge University Press, 1997.

[Bemers-Lee, et al., 2001] T. Bemers-Lee, J. Hendler, and O. Lassila, "The Semantic

Web," Scientific American, vol. 284, pp. 34-43, 2001.

[Boag, et al., 2002] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie,

and J. Simeon, "XQuery 1.0: An XML Query Language," W3C Working Draft,

vol. 15, 2002.

[Brank, et al., 2005] J. Brank, M. Grobelnik, D. Mladenic, and B. Fortuna, "A survey of

ontology evaluation techniques," in Conference on Data Mining and Data

Warehouses (SiKDD 2005) Ljubljana, Slovenia, 2005.

[Brewster, et al., 2004] C. Brewster, H. Alani, S. Dasmahapatra, and Y. Wilks,

"Data Driven Ontology Evaluation," International Conference on Language

Resources and Evaluation, Lisbon, Portugal, 2004.

[Callan, 2000] J. Callan, "Distributed information retrieval. Advances in information

retrieval," Kluwer Academic Publishers, 2000.

[Chalupsky, 2000] H. Chalupsky, "OntoMorph: A Translation System for Symbolic

Knowledge," Principles of Knowledge Representation and Reasoning, vol. 185,

2000.

[Ding, et al., 2004] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P.

Reddivari, V. Doshi, and J. Sachs, "Swoogle: a search and metadata engine for

the semantic web," Proceedings of the Thirteenth ACM conference on

Information and knowledge management, pp. 652-659, 2004.

[Doan, et al., 2004] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, "Ontology

matching: A machine learning approach," Handbook on Ontologies in

Information Systems, pp. 397-416, 2004.

[Fahlman, 2005] S. E. Fahlman, "Scone user’s manual," 2005.

[Fryer, 2004] D. Fryer, "Federated search engines," Online(Weston, CT), vol. 28, pp. 16-

19, 2004.

[Ganter and Wille, 1997] B. Ganter and R. Wille, Formal Concept Analysis:

Mathematical Foundations: Springer-Verlag New York, Inc. Secaucus, NJ, USA,

1997.

[Gildea and Jurafsky, 2002] D. Gildea and D. Jurafsky, "Automatic labeling of semantic

roles," Computational Linguistics, vol. 28, pp. 245-288, 2002.

[Grosso, et al., 1999] W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W.

Tu, and M. A. Musen, "Knowledge Modeling at the Millennium (The Design and

Evolution of Protege-2000)," Proceedings of the Twelfth Workshop on Knowledge

Acquisition, Modeling and Management (KAW99), pp. 16-21, 1999.

[Guarino, 1998] N. Guarino, Formal ontology in information systems: IOS Press,

1998.

48

[Halevy, et al., 2003] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov, "Piazza: data

management infrastructure for semantic web applications," Proceedings of the

twelfth international conference on World Wide Web, pp. 556-567, 2003.

[Hartmann, et al., 2004] J. Hartmann, P. Spyns, D. Maynard, R. Cuel, M. C. S. de

Figueroa, and Y. Sure, "Methods for Ontology Evaluation," KnowledgeWeb

Deliverable# D, vol. 1, December 2004.

[Heflin, et al., 2003] J. Heflin, J. A. Hendler, and S. Luke, "SHOE: A blueprint for the

semantic web," Spinning the Semantic Web, pp. 29-63, 2003.

[Hovy, et al., 2003] E. H. Hovy, M. Fleischman, and A. Philpot, "The Omega

Ontology," prep, 2003.

[Jiang and Conrath, 1997] J. J. Jiang and D. W. Conrath, "Semantic similarity based

on corpus statistics and lexical taxonomy," Proceedings of International

Conference on Research in Computational Linguistics, pp. 19-33, 1997.

[Kalfoglou and Schorlemmer, 2002] Y. Kalfoglou and M. Schorlemmer, "Information-

flow-based ontology mapping," On the Move to Meaningful Internet Systems

2002: CoopIS, DOA, and ODBASE, pp. 1132–1151, 2002.

[Kalfoglou and Schorlemmer, 2003] Y. Kalfoglou and M. Schorlemmer, "Ontology

mapping: the state of the art," The Knowledge Engineering Review, vol. 18, pp. 1-

31, 2003.

[Kingsbury and Palmer, 2002] P. Kingsbury and M. Palmer, "From Treebank to

PropBank," Proceedings of the 3rd International Conference on Language

Resources and Evaluation (LREC-2002), pp. 1989–1993, 2002.

[Klein, 2001] M. Klein, "Combining and relating ontologies: an analysis of problems

and solutions," Workshop on Ontologies and Information Sharing, IJCAI, vol. 1,

2001.

[Ko, et al., 2006] J. Ko, L. Hiyakumoto, and E. Nyberg, "Exploiting multiple

semantic resources for answer selection," Proceedings of of LREC, 2006.

[Lacher and Groh, 2001] M. Lacher and G. Groh, "Facilitating the Exchange of

Explicit Knowledge through Ontology Mappings," Proceedings of the 14th

International FLAIRS Conference, May 2001.

[Lenat, 1995] D. B. Lenat, "CYC: a large-scale investment in knowledge infrastructure,"

Communications of the ACM, vol. 38, pp. 33-38, 1995.

[Lita, et al., 2004] L. V. Lita, W. Hunt, and E. Nyberg, "Resource analysis for

question answering," Association for Computational Linguistics Conference

(ACL), 2004.

[Lozano-Tello, et al., 2004] A. Lozano-Tello, A. Gomez-Perez, A. Lozano-Tello, and A.

Gomez-Perez, "ONTOMETRIC: A method to choose the appropriate ontology,"

Journal of Database Management, vol. 15, pp. 1-18, 2004.

[MacGregor, et al., 1997] R. MacGregor, H. Chalupsky, and E. R. Melz,

"PowerLoom Manual," ISI, University of South California, 1997.

[Maedche and Staab, 2002] A. Maedche and S. Staab, "Measuring similarity between

ontologies," Proceedings of the European Conference on Knowledge Acquisition

and Management (EKAW), pp. 251–263, 2002.

[McGuinness, et al., 2000] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder, "The

Chimaera Ontology Environment," Proceedings of the 17th National Conference

on Artificial Intelligence, 2000.

49

[Mena, et al., 2000] E. Mena, A. Illarramendi, V. Kashyap, and A. P. Sheth,

"OBSERVER: An Approach for Query Processing in Global Information Systems

Based on Interoperation Across Pre-Existing Ontologies," Distributed and

Parallel Databases, vol. 8, pp. 223-271, 2000.

[Miller, 1995] G. A. Miller, "WordNet: A Lexical Database for English,"

COMMUNICATIONS OF THE ACM, vol. 38, pp. 11-39, 1995.

[Mueller, 1997] E. T. Mueller, "Natural Language Processing with

Thoughttreasure," Signiform, 1997.

[Niles and Pease, 2001] I. Niles and A. Pease, "Towards a standard upper

ontology," Proceedings of the international conference on Formal Ontology in

Information Systems-Volume 2001, pp. 2-9, 2001.

[Noy, 2004] N. F. Noy, "Semantic integration: a survey of ontology-based

approaches," ACM SIGMOD Record, vol. 33, pp. 65-70, 2004.

[Noy and Musen, 1999] N. F. Noy and M. A. Musen, "SMART: Automated

Support for Ontology Merging and Alignment," Twelth Workshop on Knowledge

Acquisition, Modeling, and Management, Banff, Canada, 1999.

[Noy and Musen, 2000] N. F. Noy and M. A. Musen, "PROMPT: Algorithm and

Tool for Automated Ontology Merging and Alignment," Proceedings of the

National Conference on Artificial Intelligence (AAAI), 2000.

[Noy and Musen, 2002] N. F. Noy and M. A. Musen, "PromptDiff: A fixed-point

algorithm for comparing ontology versions," 18th National Conference on

Artificial Intelligence (AAAI-2002), 2002.

[Nyberg, et al., 2003] E. Nyberg, T. Mitamura, J. Callan, J. Carbonell, R. Frederking, K.

Collins-Thompson, L. Hiyakumoto, Y. Huang, C. Huttenhower, and S. Judy, "The

javelin question-answering system at trec 2003: A multi-strategy approach with

dynamic planning," Proceedings of the Twelfth Text REtrieval Conference

(TREC2003), 2003.

[Patel, et al., 2003] C. Patel, K. Supekar, Y. Lee, and E. K. Park, "OntoKhoj: a

semantic web portal for ontology searching, ranking and classification,"

Proceedings of the fifth ACM international workshop on Web information and

data management, pp. 58-61, 2003.

[Philpot, et al., 2003] A. Philpot, M. Fleischman, and E. H. Hovy, "Semi-Automatic

Construction of a General Purpose Ontology," Proceedings of the International

Lisp Conference. New York, NY. Invited, 2003.

[Porzel and Malaka, 2004] R. Porzel and R. Malaka, "A Task-based Approach for

Ontology Evaluation," ECAI Workshop on Ontology Learning and Population,

Valencia, Spain, 2004.

[Prasad, et al., 2002] S. Prasad, Y. Peng, and T. Finin, "Using explicit information to

map between two ontologies," Proceedings of the AAMAS 2002 Wokshop on

Ontologies in Agent Systems (OAS’02), pp. 52–57, 2002.

[Quillian, 1967] M. R. Quillian, "Word concepts: a theory and simulation of some

basic semantic capabilities," Behav Sci, vol. 12, pp. 410-30, 1967.

[Raymond, et al., 2002] J. W. Raymond, E. J. Gardiner, and P. Willett, "RASCAL:

Calculation of Graph Similarity using Maximum Common Edge Subgraphs," The

Computer Journal, vol. 45, pp. 631-644, 2002.

50

[Reed and Lenat, 2002] S. Reed and D. Lenat, "Mapping ontologies into cyc,"

AAAI 2002 Conference Workshop on Ontologies For The Semantic Web,

Edmonton, Canada, July, 2002.

[Resnik, 1995] P. Resnik, "Using information content to evaluate semantic similarity in a

taxonomy," Proceedings of the 14th International Joint Conference on Artificial

Intelligence, vol. 1, pp. 448-453, 1995.

[Ross, 1976] S. M. Ross, A first course in probability: Macmillan, 1976.

[Schuler, 2003] K. K. Schuler, "VerbNet: A Broad-Coverage, Comprehensive Verb

Lexicon," Ph. D. thesis proposal, University of Pennsylvania, 2003.

[Serafini and Tamilin, 2005] L. Serafini and A. Tamilin, "Drago: Distributed reasoning

architecture for the semantic web," Proc. of the Second European Semantic Web

Conference (ESWC’05), vol. 3532, pp. 361–376, 2005.

[Si and Callan, 2005] L. Si and J. Callan, "Modeling search engine effectiveness for

federated search," Proceedings of the 28th annual international ACM SIGIR

conference on Research and development in information retrieval, pp. 83-90,

2005.

[Stumme and Maedche, 2001] G. Stumme and A. Maedche, "FCA-Merge:

Bottom-up merging of ontologies," 7th Intl. Conf. on Artificial Intelligence

(IJCAI’01), pp. 225–230, 2001.

[von Ahn and Dabbish, 2004] L. von Ahn and L. Dabbish, "Labeling images with a

computer game," Proceedings of the 2004 conference on Human factors in

computing systems, pp. 319-326, 2004.

[Voorhees, 2003] E. M. Voorhees, "Overview of the TREC 2003 Question

Answering Track," Proceedings of the Twelfth Text REtrieval Conference (TREC

2003), 2003.

[Zhang, et al., 2004] Y. Zhang, W. Vasconcelos, and D. Sleeman, "Ontosearch: An

ontology search engine," Proc. 24th SGAI Int. Conf. on Innovative Techniques

and Applications of Artifial Intelligence, 2004.

[Ziegler, et al., 2006] P. Ziegler, C. Sturm, and K. R. Dittrich, "The SIRUP Ontology

Query API in Action," LECTURE NOTES IN COMPUTER SCIENCE, vol. 3896,

p. 1172, 2006.

