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Abstract 

 

In the last decades the number of available ontologies has grown considerably. These 

resources offer the promise of easily-accessible, open-domain ontological information, 

but the existence of such diverse ontologies raises the issue of information merging and 

reuse. A comparison of available ontologies reveals both redundant and complementary 

coverage, but the variety of frameworks and languages used for ontology development 

makes it a challenge to merge query results from different ontologies.  

This research proposes to address this problem by building an ontological 

middleware level for only small fragments of ontologies in an on-demand basis by 

querying multiple ontologies and merging the query results from multiple knowledge 

base systems. We then follow ontological chains and inferences across ontologies, using 

partial query results from one ontology to query another.  This is a more complex version 

of cross-data-base joins, where the data schemas are sufficiently compatible.  

An initial evaluation used the federated ontology search for answer type checking 

in question answering. The results of the evaluation show that it is possible to obtain 

results that outperform querying ontologies independently in both precision and recall. 

Solutions to additional problems in querying multiple ontologies such as concept 

identification and ontology selection will be provided using string and structural 

similarity measures. We propose the creation of an evaluation framework using the 

question and answer sets in the TREC evaluations to account for a wider set of 

ontological operations.  
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1. Problem Statement 

1.1. Motivation 

Although several Ontology  definitions co-exist [Guarino, 1998], an Ontology can be 

defined as a model that represents a domain and is used to reason about objects in that 

domain and the relations between them. It is usually composed of concepts, relations 

between those concepts, concept properties and instances. Within the scope of this work 

we consider taxonomies, semantic nets [Quillian, 1967] and lexical resources such as 

Wordnet [Miller, 1995] as ontologies. The use of ontologies is now widespread in areas 

as diverse as biomedical research, information extraction and knowledge engineering and 

management. 

 

In the last decades the number of available ontologies has grown considerably. Several 

proprietary and open-domain ontologies such as Cyc [Lenat, 1995], SUMO [Niles and 

Pease, 2001], Omega [Philpot, et al., 2003], Scone [Fahlman, 2005], ThoughtTreasure 

[Mueller, 1997], Wordnet [Miller, 1995], VerbNet [Schuler, 2003], Framenet [Baker, et 

al., 1998] and Propbank [Kingsbury and Palmer, 2002] have become available. Swoogle 

[Ding, et al., 2004] has now indexed more than 10 000 ontologies.  These resources offer 

the promise of easily-accessible, open-domain ontological information, but the existence 

of such diverse ontologies raises the issue of information merging and reuse. A 

comparison of the ontologies reveals both redundant and complementary coverage, but 

the variety of frameworks and languages used for ontology development makes it a 

challenge to merge query results from different ontologies. The number of available 

languages for ontological knowledge engineering such as RDF, OWL, DAML+OIL and 

CYCL, combined with the existence of independent interfaces aggravates the issue. The 

lack of a formal way to access and combine the knowledge from different ontologies is 

an obstacle to more effective re-use and combination of these resources. 

 

One approach to the multi-ontology issue is to absorb all the knowledge into a common 

ontology ahead of time. However this approach as several drawbacks, as defined in 
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[Klein, 2001; Serafini and Tamilin, 2005], such as (i) non-scabality, (ii) losing language 

and reasoning specificity of distinct ontologies, (iii) losing privacy and autonomy of 

ontological knowledge (iv) language level mismatches such as syntax mismatches, 

differences in logical representation and different semantic primitives and (v) Ontology 

level mismatches, such as difference in scope, coverage and granularity, making this 

challenge thus far too daunting in practice. A second approach is to query more than one 

ontology via different interfaces, and interpret the results of each ontology individually, 

essentially moving the entire challenge from the ontology provider to the application 

builder. A third approach is to build an ontological middleware level for only small 

fragments of ontologies in an on-demand basis, that is: 

• Query multiple ontologies and then merge the query results from multiple 

knowledge base systems, much like Federated Search in information retrieval [Si 

and Callan, 2005]. 

• Follow ontological chains and inferences across ontologies, using partial query 

results from one ontology to query another.  This is a more complex version of 

cross-data-base joins, where the data schemas are sufficiently compatible.  

 

Currently, the main approaches to a solution for these problems focus on ontology 

integration, by creating a mapping between the concepts and relations of different 

ontologies.  Some cases, such as the Semantic Web project [Bemers-Lee, et al., 2001] 

primarily rely on merging two ontologies by establishing a full mapping between them. 

Some efforts have tried to produce a merged ontology automatically using a bottom-up 

approach such as FCA-Merge [Stumme and Maedche, 2001]; most involve some degree 

of semi-supervised mapping. Other approaches, such as the one taken by CYC, try to 

absorb other ontologies into a single main ontology while maintaining coherence [Reed 

and Lenat, 2002]. One disadvantage of these approaches is the prohibitive cost of 

producing a mapping or absorbing an ontology, given their increasing scale and rate of 

availability. Another disadvantage is that it is not always possible to establish a one-to-

one mapping between the concepts and relations in one ontology and the concepts and 

relations in another. Furthermore, there is the problem of keeping the mappings updated 

as the original ontologies evolve. A large number of available ontologies are considered 
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works in progress and are updated frequently, which implies a constant updating of any 

mappings associated with those resources.  

 

Most applications that use ontological information would benefit from an approach that 

models the information need, queries the relevant ontologies and retrieves the best result 

while providing a single unified interface to the client application. If we look to other 

domains for inspiration on how to proceed, we can find a similar problem in the field of 

Federated Search [Callan, 2000; Fryer, 2004]. Information Retrieval is usually based on a 

single database model of text retrieval. But to cope with proprietary information spread 

around the world in separate databases, distributed information retrieval explicitly models 

multiple databases for text retrieval. Each database is queried independently, the results 

are merged when possible and a new global ranking is established. 

 

In the same fashion, we can model our ontologies as individual sources, construct a query 

that describes the information need, query each ontology independently and merge the 

results into one ranked list. 

 

Using Federated Ontology Search we can parallelize query execution while respecting 

the structure of the individual ontologies, taking advantage of both redundant and 

complementary knowledge in the available ontologies to improve the overall 

performance of the system. 

1.2. Motivating Example 

 

Although there are many applicable areas for this research, type checking in the factoid 

QA domain is suitable to prove the utility of our approach. The advantages of this are 

threefold. First, the application of this research in factoid QA can be well defined and the 

ontological operations involved are conceptually clear but yet not trivial. Second, the 

training and test data created for the TREC QA evaluations [Voorhees, 2003], consisting 

of corpora, question sets and answers keys, provide the required evaluation material.  
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1.2.1. Question Answering 

In Question Answering, the goal is to take a question in natural language and provide an 

answer also in natural language. In the JAVELIN I  question answering system [Nyberg, 

et al., 2003] a set of modules is used, specifically the Question Analyzer (QA) module, 

which analyzes the question; the Retrieval Strategist (RS) modules, which retrieves the 

relevant documents; the Information Extractor (IX) module, which analyzes the 

documents retrieved by the RS and provides candidate answers; and finally the Answer 

Generator (AG) module which analyzes the candidate answers and generates a final 

ranked list of answers. Ontological information is typically used within JAVELIN to 

determine the relation between the expected answer type and the candidate answers or to 

provide answer verification, if the answer can be found directly in an available 

ontological resource [Ko, et al., 2006].  

1.2.2. Example 1 

For this example let’s assume that we have access to the following ontologies 

 

 

Ontology 
CYC 

Wordnet 

U.S. Gazetteer 

Table 1 - Available Ontologies for example 1 

 

Let’s consider the question: What is the largest city in Germany? 

 

Part of the QA module’s responsibilities in analyzing the question is to determine, 

amongst other things, the type of answer we are expecting and the constraints on that 

answer. In this case the QA module determined that the type of answer is location with 

an additional constraint that the answer must be a city. Table 2 shows a partial output 

from the QA and Table 3 shows Javelin’s output. 
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Question What is the largest city in Germany 

Answer Type location 

Subtype Constraint city 

Table 2 – Output of the Question Analyzer. We can see the constraints 

expected in the answer. 

 

 

 

 

AG output 
Rank Answer Judgment 

1 Italy Not a City 

2 Berlin (Correct) Correct 

3 Horten Incorrect 

4 Norway Not a City 

5 South Africa Not a City 

6 Dusseldorf Incorrect 

7 Spain Not a City 

8 Moscow Incorrect 

9 France Not a City 

10 Swiss Not a City 

11 London Incorrect 

12 Oslo Incorrect 

13 Cologne Incorrect 

14 Pretoria Incorrect 

Table 3 – Output of the Answer Generator 

 

  

As we can see the correct answer is ranked second. Furthermore, the first ranked answer, 

as well as several others, does not obey the constraints set by the QA module because it is 

not a city. We need a way to enforce those constraints on the candidate answers. One 

possibility is to use ontological knowledge to verify these constraints, but given that QA 

is an open domain field, there is presently no one ontology with the adequate coverage.  

 

Consider an example which illustrates the federated ontology search approach. The main 

idea in this case is that we would submit each of the candidate answers along with the 

answer type constraints for verification. 

 

I will show the procedure for the first two answers in the ranked set. The rest of the 

answers would proceed in similar fashion. 
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Constraints : city, location 

 

a) Answer1 : Italy 

a. The available ontologies are queried regarding if there is any relation 

between Italy and city 

 
 

b. The results are collected. Each result contains a confidence of the 

correctness of the result as well as a source confidence 

 
 

c. Merge and rank the results. When two results are merged, their 

confidence is boosted 

Wordnet CYC 
U.S. 

Gazetteer 

Italy 

Country 

Location 

Merging and Ranking 

Confidence(R1) = x 

R1 

Italy 

Country 

Location 

Confidence(R2) = y 

R2 

Italy 

City 

Location 

Confidence(R3) = z 

R3 

Wordnet CYC U.S. 

Gazetteer 

relation(Italy,[city, location])? 
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d. Finally a ranked list is produced by the server and the highest ranking 

answer is that Italy is a country rather than a city. 

 

 

1 

2 

Italy 

Country 

Location 

 

Confidence(R12) = xy 

Italy 

City 

Location 

Confidence(R3) = z 

Rank Result 

Italy 

Country 

Location 

R1 

Italy 

Country 

Location 

Confidence(R2) = y 

R2 

Confidence(R1) = x 

Italy 

Country 

Location 

Confidence(R12) = xy 

R12 

Italy 

City 

Location 

Confidence(R3) = z 

R3 
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b) Answer 2: Berlin 

 

a. Step a would be the same as before  

 

b. The results are collected. Each result contains a confidence of the 

correctness of the result as well as a source confidence 

 
 

c. Merge and rank the results. When two results are merged, their 

confidence is boosted. 

 
 

Wordnet CYC 
U.S. 

Gazetteer 

Berlin 

City 

Location 

Merging and Ranking 

Confidence(R1) = x 

R1 

Berlin 

City 

Location 

Confidence(R2) = y 

R2 

Berlin 

City 

Location 

Confidence(R3) = z 

R3 

Berlin 

City 

Location 

R1 

Berlin 

City 

Location 

Confidence(R2) = y 

R2 

Confidence(R1) = x 

Berlin 

City 

Location 

Confidence(R12) = xyz 

R123 

Berlin 

City 

Location 

Confidence(R3) = z 

R3 



9 

d. Finally a ranked list is produced by the server shows Berlin as the only 

answer 

 

 
 

After applying this procedure to all the answers, Table 4 shows the final ranked list of 

answers. We can see that the correct answer is now on top. 

 

 
AG output 

Rank Answer Judgment 

2 Berlin (Correct) Correct 

3 Horten Incorrect 

6 Dusseldorf Incorrect 

8 Moscow Incorrect 

11 London Incorrect 

12 Oslo Incorrect 

13 Cologne Incorrect 

14 Pretoria Incorrect 

Table 4 – Output of the Answer Generator 

 

1.3. Thesis Statement 

Our hypothesis is that given a set of ontologies it is possible to use the combined 

knowledge contained in those ontologies while maintaining the individual ontologies in a 

distributed approach. This can be achieved by defining a set of elementary ontological 

operations which allow for the creation of complex ontological queries through 

composition of the simpler operations.  

1.4. Expected Contributions 

The proposed research is expected to contribute the following; 

• A novel framework for ontology integration, including: 

1 

Berlin 

City 

Location 

Confidence(R123) = xyz 

Rank Result 
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o A novel ontology-independent query algorithm for ontologies. 

o A merging algorithm for merging ontological results. 

o A scoring metric for scoring merged results. 

• A demonstration that it is possible to use multiple ontologies while keeping them 

independent. 

• A similarity metric for ontological results. 

• A task-based evaluation task for ontologies, as well as suitable data set. 

1.5. Document Structure 

The rest of the document is organized as follows. Chapter 2 surveys the current literature 

on the relevant subjects. Chapter 3 describes the methodology used and the preliminary 

results conducted so far to determine the feasibility of our approach. In Chapter 4 we 

describe the planned experiments to demonstrate our claims and the proposed evaluation 

of those experiments. At the end of chapter 4 we describe the expected timetable for the 

thesis work. 
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2. Related Research 
This work intersects with many areas of research, it is impossible to be exhaustive when 

describing related research given the quantity of relevant works. We will address some of 

the most salient works in each area of interest and try to given an overview of the 

different methods that are relevant to the proposed approach.  

2.1. Ontology Selection 

Ontology selection deals with the selection of an ontology given a query. SWOOGLE 

[Ding, et al., 2004] uses traditional Information Retrieval techniques to retrieve semantic 

web documents (SWD), specifically character based N-Grams, n-character segments of 

the text which spans inter-word boundaries, or URIrefs as keywords. The system indexes 

ontologies primarily designed with the OWL language which supplies by design a set of 

metadata which is extremely useful for identification of the SWD. Since the words are 

usually compounded into URIref terms, this N-Gram approach is particularly efficient to 

index and retrieve the SWD. 

 

Link analysis is used in [Patel, et al., 2003; Zhang, et al., 2004] to rank ontologies in 

respect to queries in the OntoSearch system and in the OntoKhoj system. Alani and 

Brewster in [Alani and Brewster, 2005] create the AKTIVERANK algorithm, aggregate a 

number of measures that look into the structural features of concepts such as concept 

similarity and structural density. 

 

Necessary to the task of ontology selection is the subtask or concept identification, where 

the concepts in the query are identified in the ontologies. Resnik in [Resnik, 1995] uses 

information content, as defined in [Ross, 1976], to determine the semantic similarity of 

two concepts, the author restricts himself to the use of  is-a relations to calculate the 

concept similarity. Jiang and Conrath [Jiang and Conrath, 1997] combines a lexical 

taxonomy with corpus statistical information to measure semantic similarity between 

words and concepts. 
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2.2. Ontology Mapping  

Although work as been done in ontology integration such as [Reed and Lenat, 2002] and 

[Hovy, et al., 2003], where the goal is to incorporate several ontologies into one larger 

ontology, recently the focus seems to be in ontology mapping. 

 

Stumme and Maedche in [Stumme and Maedche, 2001] based their work on the work of 

Ganter and  Wille’s [Ganter and Wille, 1997] work on formal concept analysis. Their 

method, the FCA-Merge is semi-automatic method for merging ontologies that uses 

natural language techniques to derive a lattice of concepts which is then explored by a 

knowledge engineer. The FCA-Merge assumes that a corpus relevant to both ontologies 

to be merged is available and relies on the availability of classified instances in those 

ontologies.  

 

Using the Barwise-Seligman theory of information flow [Barwise and Seligman, 1997], 

Kalfoglou and Shorlemmer [Kalfoglou and Schorlemmer, 2002] created the IF-MAP 

method, a method for automatic ontology mapping. IF-Map generates a logic 

infomorphism given two ontologies. This method relies on a partial translation from the 

source ontologies to horn clauses, which is then used to discover the infomorphisms, if 

any. The result is stored for future reference.  

 

Ontology mapping and alignment has been tackled by Noy and Musen through the 

creation of several tools that work as plug-ins for the open-source Protégé-2000 ontology 

editor [Grosso, et al., 1999]. The first tool was SMART [Noy and Musen, 1999], 

followed by PROMPT [Noy and Musen, 2000] and PROMPTDIFF [Noy and Musen, 

2002] . The tools use linguistic similarity metrics for matching concepts. The authors 

claim that PROMPT not only uses linguistic similarity but also the similarities of the 

surrounding structures of the concepts to be merged. A set of heuristics is then applied to 

the performed the merging procedure. The PROMPT tool, as well as Chimaera 

[McGuinness, et al., 2000], provide semi-automatic guidance for the knowledge engineer. 

Similarly the SHOE system [Heflin, et al., 2003] provides with a set of heuristics 
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designed to align ontologies, offering the user a set of suggestions regarding ambiguous 

concepts.  

 

Another approach is to use machine learning to develop a mapping between ontologies, 

examples of this kind of approach are given by Lacher and Groh [Lacher and Groh, 2001], 

with the CAIMAN system, Doan et. al. [Doan, et al., 2004], with the GLUE system, use a 

set of practical similarity measures to indentify similar concepts. A Bayesian approach is 

used by Prasad et. al. [Prasad, et al., 2002] for deciding between similarity comparisons. 

 

OntoMorph [Chalupsky, 2000] presents a method for translation of symbolic knowledge, 

integrated within the PowerLoom knowledge representation system [MacGregor, et al., 

1997]. Using syntactic rewriting through pattern matching, the author claims that the 

potential of this translation system is adequate to handle complicated syntactic 

transformations. Semantic rewriting is applied to conflate large classes of concepts. 

 

DRAGO [Serafini and Tamilin, 2005] uses the peer-to-peer paradigm with Distributed 

Description Logics to supply distributed reasoning services in multiple ontologies. 

Within what the authors call the contextual reasoning paradigm, the authors propose a 

distributed tableau algorithm to avoid the drawbacks of scalability and proprietary 

information and is able to provide with a distributed verifiability capability. Piazza 

[Halevy, et al., 2003] proposes a language based in XQuery [Boag, et al., 2002] that is 

used to described semantic queries and that can be used with RDF style sources, although 

primarily developed for XML. OBSERVER [Mena, et al., 2000] uses interontology 

relationships such as synonyms, hyponyms and hypernyms to rewrite user queries to 

obtain translations across ontologies. 

 

A more extensive survey on the subject can be found in [Kalfoglou and Schorlemmer, 

2003] and in [Noy, 2004]. 
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2.3. Ontology Evaluation 

The increase in the number of available ontologies demands the question of ontology 

evaluation. Many approaches were taken on this issue. Two good reviews of different 

approaches are given in [Brank, et al., 2005] and [Hartmann, et al., 2004].  

 

Porsel and Malaka [Porzel and Malaka, 2004] use a task based evaluation approach to 

evaluate ontologies. Given that an ontology will typically be used in some task, this 

provides a direct comparison of two or more ontologies for that task. The problem with 

this is that the range of tasks necessary to provide enough coverage for the typical 

applications in which ontologies are used is very large, making impractical to use as a 

generic evaluation metric. Yet given the diverse nature of the ontologies themselves, this 

seems to be the only feasible method at times. 

 

The OntoMetric approach [Lozano-Tello, et al., 2004] establishes a set of processes a 

user should follow, given the specific system requirements, to evaluate different 

ontologies. The OntoMetric system uses a set of 160 characteristics based in features 

such as the content represented in the ontology, the ontology language, the methodology 

used to develop the ontology, the costs of using the ontology in the system and the 

software environment used. 

 

Maedche and Staab [Maedche and Staab, 2002] use a gold standard to which they 

compare the ontology to evaluate. A data driven approach is used in [Brewster, et al., 

2004], where the authors use latent semantic analysis to compare a set of concepts from a 

domain specific corpus and a set of concepts in the ontology, determining a fit between 

the two sets. 
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3. Methodology 
 

Federated Search identifies four key areas of research for a problem solution. We will 

show that the same problems apply in the area of Federated Ontology Search: 

 

• Resource Selection 

• Query Execution 

• Result Merging 

• Result Ranking 

 

Before we consider each of these topics, we must establish some basic definitions 

3.1. Basic Definitions 

3.1.1. Ontologies and Graphs 

Although there is no consensual definition of ontology, a good start comes from G. 

Stumme and A. Maedche (Stumme and Maedche, 2001). The authors claim that most 

ontologies share a few common items such as  

• Concepts, a hierarchical IS-A relation and further relations. 

• Some ontologies have constraints, functions or axioms 

 

For the purposes of our research, an ontology can be as simple as a semantic network 

[Quillian, 1967], where no distinction is made between concepts and instances, and the 

only relation possible is of the is-a type, or as complex as CYC [Lenat, 1995], with a 

clear distinction between concepts and instances, where multiple inheritance is allowed 

and there is an extremely reach set of possible relations. 

 

A basic ontology definition could given by a tuple O:= (C; is a; R), where C is a set 

whose elements are called concepts, is a establishes a partial order on C and R is a set 

whose elements are called relation names. An example is given below. 
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Figure 1 - an example of a basic ontology 

 

A graph definition could be given by G = (V,E)  where V is the set of vertices and E is 

the set of edges. An example is given below. 

 
 

Figure 2 - A graph structure 

 

Given the two definitions one can see that graphs fit the basic structure of ontologies very 

well. Vertices are considered concepts, Labeled edges as relations. 

3.1.2. Query  

A query is a request for information from the set of existing ontologies. It is comprised of 

operators, as defined in section 3.2.1. 

3.1.3. Result 

A Result is the rooted directed acyclic graph (RDAG) that results from executing a query. 

bird vertebrate 

animal 

sparrow 

hen 

is a 

is a 

hyponym 

synonym 

hyponym 

v1 

v2 

v3 

v4 

v5 

e1 

e3 

e2 

e4 

e5 
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3.2. Ontological Search 

The success of the proposed approach hinges on the definition of a search method that is 

independent of any ontology. For this purpose we introduce the concept of operator and a 

concept of query based on operators. The main purpose of an operator is to decouple the 

search process from the information need. Instead of describing a complete semantic 

framework, the goal is to describe the information request in terms of a decomposable 

query that can be transformed into a set of operators. This would provide an elegant 

abstraction from the formal representations implemented by our ontological sources, 

allowing each operator to be an independent request. 

  

As an example, Figure 3 shows the execution of the query children(car). This query uses 

the children operator to get all the children of the concept car. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  - Query Execution 

 

The query is interpreted and performed in each ontology separately. The results are then 

merged and a final list is ranked according to the scoring algorithm. The final set of 

results is then returned. 

 

Wordnet Thought 

Treasure 

Federated Ontology 
Search Engine 

car 

coupe cab 

0.8 0.8 

R1 

children(car) 

car 

cab cruiser 

0.9 0.9 

R2 

merge 

children 

0.8 0.9 

car 

cab cruiser coupe 
0.98 

R12 

scoring 

algorithm 
coupe 

cab 

cruiser 

0.85 

result 

query 

children 
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It is important to note that by defining a set of operators we are in fact delegating 

responsibility for their execution to the ontologies themselves, therefore making no 

restrictions on whatever processes are executed in order to obtain the necessary 

information. This means that operators can be implemented using extended features of 

ontologies (e.g. inference, grounding, restrictions and theorem-provers). The only 

constraint is that the output of each query execution is a Rooted Directed Acyclic Graph 

(RDAG). 

 

Next I will give a description of a few possible basic operators as an example. These 

operators form the base for my experiments, but not a final set of operators, since 

defining a set of operators is one of the goals of this thesis.  Following that I will describe 

the concept of query within this context and finally I will address the problems of 

resource selection, merging and results scoring in detail. 

3.2.1. Operators 

An atomic operator is an atomic search operation on an ontology. It takes as input a graph 

and produces a ranked list of graphs as output. An operator is defined as an operation on 

 

op(g): g � g’, where g, g’ is a RDAG 

 

We now define a set preliminary set of operators used in the current evaluations. By no 

means does this constitute the base set of operators, necessary to represent the basic 

ontology operations. That is subject of further research. 

3.2.1.1. children operator 

The children operator takes a graph g as input and expands each concept in g to the set of 

children concepts. Currently defined as  
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3.2.1.1.1. Base Case  

In base case let’s look at an example where the set of vertices of g, V(g) = 1, that is, the 

graph is comprised of one concept. 

 

Query : #children(g) 

 
Figure 4 – Base case for children operator 

 

As we can see the base case expands one concept into a set of concepts, but what happens 

when we apply this operator to a set of concepts? 

 

3.2.1.1.2. Complex Case 

In this case each concept in g is extended to the set of similar concepts 

Query : #children(g) 
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Figure 5 – Complex case for children operator 

3.2.1.2. relation operator 

#rel(g1, g2,[r1,r2 … rn]) 

 

The relation operator takes g and for each of it’s concepts tries to find the relationship to 

each of the concepts in g’ using the relations r1 to rn. If no relations are specified, then all 

relations are considered. 

 

 

Example : #rel(car, vehicle,[is_a]) 

 

 
Figure 6 – relation operator 
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3.2.1.3. and operator 

#and(g1,g2) 

 

The and operator represents the intersection operation. It takes g1 and g2 and return g’ 

where g’ is the intersection of the two. 

 

Example 

 

 
Figure 7 – and operator 

 

3.2.1.4. or operator 

#or(g1,g2) 

 

The or operator represents the intersection operation. It takes g1 and g2 and return g’ 

where g’ is the union of the g1 and g2. This operator does not apply boosting. Given two 

similar edges one of the edge is picked arbitrarily. 

 

Example 
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Figure 8 – or operator 

 

3.2.2. Query 

 

The general execution of a query is described as follows. First we select the appropriate 

ontologies. Second, we query the selected resources. Third we merge the results 

according to a graph merging algorithm. Finally we rank the results according to a 

confidence estimation algorithm. 

 

A query operation is composed of atomic operators and Boolean operators. Each query is 

reduced to a linear sequence of atomic operators. 

 

#rel(#sim(lymphoma),cancer) 

 

Query 1 : #sim(lymphoma) � g 

Query 2 : #rel(g,cancer) � g1 
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Each of the atomic operators is considered an atomic query and performed on the selected 

resources 

 

 

 

 
Figure 9 – Diagram showing the execution steps of an operator 

 

 

3.2.2.1. Query Results 

A query result is a set of Rooted Directed Acyclic Graphs (RGAD). The graph contains 

labeled edges and attributes are modeled as relations. Each edge contains a confidence 

associated with it. This confidences expresses the confidence of the source in the relation. 

 

Example 
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3.2.3. Resource Description and Selection 

3.2.3.1. Resource Description 

The increasing trend in the availability of resources suggests that often we will be able to 

find overlapping sources for a given query. At the same time, some resources will be very 

domain oriented which brings up the problem of resource description and selection.  

 

Ideally we would like to be able to select the resources to query in order to maximize the 

probability of success. We would like to model the success of a query given an ontology. 

We must consider two cases, similar to the situation in information retrieval, cooperative 

and uncooperative resources [Si and Callan, 2005]. 

 

A cooperative source is a source whose knowledge is fully available for querying and 

indexing. In many cases though, it’s not realistic and maybe not even desirable to expect 

cooperative sources.  The proprietary content in some ontologies might not be made 

available by its authors, or perhaps part of the ontology might be available, with filters to 

control access to the information contained in such ontology. Examples of this can be 

taken from Cyc, which releases OpenCyc as a free smaller portion of the knowledge 

contained in the full Cyc. Although at this moment they are separate entities, one could 

conceive of a controlled access paradigm. We must also consider cases where the 

ontology has incorporated inference engines and logic mechanisms, the use of which is 

advantageous and important. Therefore, it is in our interest to evaluate the contents in 

terms of the produced results, rather than the information contained in the ontology. 

 

For an example of the importance of this resource description, we can look to our 

example in 1.2.2., where selecting the wrong resource would lead to wrong results, 

Where without an adequate resource description, it will be extremely hard to differentiate 

between expert and non-expert sources. 

 

One possible approach to resource description is to formulate a set of random queries that 

determine the content of the ontology to be queried. One obvious challenge in this 
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approach is the creation of such queries. Given the structured nature of ontological 

resources, automatic extraction of queries from a test corpus becomes increasingly hard. 

Another possible approach is to apply proximity models, where each result is judged 

regarding how close is to the other results. A commonsense result is built by taking the 

average of the results returned and the difference is measured for each result. This will 

not tell us the expertise of the ontology, but will give us a sense of how disparate each 

ontology is from the norm. This would provide a relative measure of ontology description. 

3.2.3.2. Resource Selection 

Resource selection refers to the selection of the most appropriate set of ontologies for a 

given query. The key issues in this task are the identification of concepts in ontologies 

and the matching of an ontology description with a query. 

 

The problem of identifying concepts in ontologies is particularly vital given that although 

we typically have strings representing the concepts in the query these are usually not 

enough to eliminate ambiguity. Furthermore, the concepts in ontologies may be 

polymorphic, having multiple literal representations. This problem increases when we 

consider the use of multilingual ontologies, where the concepts are represented in several 

totally different languages. The use of ontologies in different languages would lead to 

necessity of a distance metric specifically tuned to multilingual issues.  

 

3.2.4. Merging 

One advantage of this approach is that rather than trying to merge two entire ontologies, 

we merge only the results. This significantly reduces the problem of merging ambiguous 

concepts given that queries are grounded in a query concept and therefore only relations 

that apply to the concept in the query are returned. Polysemic concepts will be explicitly 

modeled via separate results, with a variable confidence on the relations contained in 

each result. 
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The structured nature of the query results implies that the result merging problem in the 

ontology domain is very different from result merging in federated text search, where the 

results typically consist of unstructured data. In the case of Ontology Search the results 

are graphs, which allow us to treat merging as an instance of Inexact Graph Merging. 

While one of the goals of merging in Federated Search is to eliminate duplicates, the 

primary goal of merging in ontology search is to find complementary information. The 

goal of ranking in ontology search is to produce, at the top-ranked position, the most 

complete and accurate result. Generally speaking, we want to merge two results if they 

represent information about the same concepts, thus creating a more complete result.  

As an example, let us consider three distinct ontologies, O1, O2 and O3. Let us assume 

that we execute the query sim(bank), with the purposes of finding concepts similar to 

bank. Imagine that ontology O1 and O2 both interpret bank as river_bank while ontology 

O3 interprets bank as money_bank. Given this scenario, we would like the result set to 

contain two results, one referring to the similar concepts of river_bank and the other to 

the similar concepts of money_bank. The results from O1 and O2 should be merged since 

that is likely to yield an increase in the quantity of information contained in the result, as 

well as the confidence in the concepts common to the two results.  

The problem can be formulated as follows. Given two RDAGs g1 and g2 we want to 

merge the two graphs if they are similar. Typically this is done by considering one of two 

options, either we measure the similarity between the graphs or measure the difference. 

But in our case we not only want to measure the similarity but also find the maximum 

common subgraph. We should look to the science of Inexact Graph Matching for 

guidance here. 

Inexact Graph Matching occurs when we do not expect to find an isomorphism between 

the two graphs to be merged. This is one of the most complex problems in computer 

vision [Bienenstock & Malsburg, 1987] and is also an important part of chemical 

similarity searching [Raymond et al., 2002]. More specifically, inexact graph matching is 

proven to be an NP-Complete problem [Abdulkader, 1998]. 

In the next section we will discuss graph similarity. 
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3.2.4.1. Graph Similarity 

Graph similarity Distance [A. Sanfeliu & K. Fu, 1981] is typically calculated in one of 

the following ways: Cost Based Distance, Feature Based Distance or Maximum Common 

Subgraph. 

 

Cost Based Distance is based on edit operations on the graph, typically add nodes or 

edges, remove nodes or edges and re-label nodes or edges, where each operation is 

associated with a cost. Given two graphs g1 and g2, the edit distance between g1 and g2 is 

the minimum number of edit operations necessary to transform g1 into g2. 

 

Feature based distances use a set of invariants established from the graph structural 

description, using these features in a vector representation to which we then apply 

distance or similarity measures. 

 

The goal of the Maximum Common Subgraph approach is to find the largest Subgraph 

common to both g1 and g2. To address this requirement, current approaches use the 

concept of maximum clique detection, or the concept of maximally connected sub graphs. 

Given the NP complete nature of the problem, the problem is then changed into finding 

the Maximum Common Edge Subgraph, which focuses on finding graphs with the 

maximum number of edges. In our case we use a variation of the overlapping coefficient 

for graphs, a measure whereby if graph g contains g’ or the converse then the similarity 

coefficient is a full match. 

3.2.4.1.1. Localized Boosting Algorithm 

As stated before, Inexact Graph Matching is an NP complete problem. In order to tackle 

this problem, we take advantage of the fact that our graphs are RDAG’s to reduce the 

complexity of the problem. The goal here is to create a set of tuples that will be the basis 

for comparison of the two graphs. 
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Given g1 and g2 as results of a query, the algorithm is as follows. After applying a 

screening procedure to determine the upper bound on similarity, as defined in [Raymond, 

et al., 2002], we are left with graphs where sim(g1,g2) > T, that is, graphs where the 

similarity between g1 and g2 is above a certain threshold T, defined in the screening 

procedure. The screening procedure produces a subgraph that for each graph given, 

which means that we now basically want to determine g1 ∩ g2 for which we will apply 

localized boosting and then add the nodes and edges that were previously discarded. 

The basic intuition behind the confidence boosting is that the confidence of the edges is 

boosted whenever two edges are merged. The boosting is determined through the use of 

the Soft Or, given by the formula: 

 

 

 

The motivation of using Soft Or to determine the boosting is that this gives us a smooth 

boosting curve with an upper bound of 1.   

 

E.g. A = 0.8, B = 0.7, Result = 1-(1-0.8)(1-0.7) = 1-(0.2 x 0.3) = 0.94 

 

In order to apply confidence boosting we apply the concept of tuples, where tx = (cx,cy,r) 

is a tuple, cx,cy  are concepts and r is a relation.   

First we split g1 and g2 into tuples tx = (cx,cy,r), cx,cy,r ∈ g, such that cx and cr are adjacent 

and r(cx,cy). We then compare the sets of tuples from g1 and g2 and if sim(tx,ty)>T then we 

boost the confidence of tx. 

.  

An example is given in Figure 10 
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Figure 10 – Localized Boosting Algorithm 

 

3.2.4.1.2. Tuple Similarity 

Tuple similarity measures are based on the linear combination of the edge similarity 

measure and the concept similarity measure.  

 

When comparing concepts or relations, we use the Q-Gram distance on the strings that 

represent them [Gravano et al., 2001]. A q-gram is character based N-Gram measure. The 

intuition behind the use of q-grams as a foundation for distance metric is that when two 

strings s1 and s2 are within a small edit distance of each other, they share a large number 

of q-grams in common. This metric is fairly robust to orthographic errors, morphological 

errors and compound words, which makes it suitable for our purposes. 

 

The similarity between two tuples is given by the minimum similarity of the concepts and 

relations contained in the tuples. Formally  
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3.2.5. Scoring Results 

A result is scored in a compositional manner, by scoring the outcome of each operator 

used in a query individually before calculating the final score. A ranking will be 

computed from the scores of the results thus making the computation of the ranking score 

a key issue, much like in traditional Information Retrieval. 

 

An operator can be either recall centric or precision centric. Operators that focus on recall 

will typically return results with as much information as possible. The similarity operator, 

for example, returns all the synonyms associated with a concept, the more synonyms the 

better the result should be, all else being equal. Operators that focus on precision will 

usually return chains of associations. They focus on precision of the relations. As an 

example, the relation operator finds the relation between two concepts. All else being 

equal, a direct relation would be better than a long chain of relations. 

 

When a result is merged from two other results, the confidence in the sources from which 

the results were extracted is combined using the soft or rule, as described before. We now 

present two scoring metrics, to be used by precision type operators and recall type 

operators respectively. 

3.2.5.1. Precision scoring metric 

The goal of this scoring metric is to give preference to shorter graph lengths. Given that 

this metric is used for precision type operators, it is desirable to have results with short 

chains. 
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Where cs is the confidence of the source, ce is the confidence on the edge and avg_length 

is the average distance of the paths contained in the graph, from root to leaf node. The 4
th

 

power was empirically determined to give an adequate curve to the confidence decrease. 

3.2.5.2. Recall scoring metric 

The recall scoring metric gives preference to graphs with large node degrees. Given that 

this metric is used by recall type operators, we want the score to increase with the 

quantity of diverse information contained in the graph. Thus 

 

 

 

 

 

Where avg_degree is the average degree of the nodes contained in the result. 

3.3. Known Issues with current work 

The research work in this thesis is driven by a set of problems that are yet to be solved 

satisfactorily. Although this is not a complete enumeration of such problems, it represents 

the set of prominent problems at this stage. These constitute the focal points of the 

proposed research and will be addressed by it. 

3.3.1. Identification of the correct concepts and relations in ontologies 

String based comparison, currently the method used, is not adequate to deal with the 

phenomenon of polymorphic concepts, abundantly present in many ontologies as well as 

polisemic strings. The necessity of limiting ambiguity and identifying the correct 

concepts and relations requires an approach that takes into account more than just unique 

tokens, indicating that some notion of context must be present. 
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3.3.2. Concept and edge similarity between concepts in different 

ontologies 

The identification of concept and edge similarity, currently done using string similarity 

metrics, is insensitive to the polymorphic problem, as mentioned before. Furthermore the 

issue of ontologies in different languages exacerbates the problem considerably. Intuition 

suggests that viable approaches should include topologic similarity as well as string 

similarity. This amounts to comparing contexts to define concept and edge similarity. 

3.3.3. Chains of indirect inference  

A chain of indirect inference is a chain in which parts come from different ontologies, 

that is, an inference chain that goes from A to B, where A exists one ontology and B 

exists in a different ontology. Chains of indirect inference reduce the reliability in the 

results. One of the factors seems to be the increase in error when unifying concepts in 

two different ontologies. In order to take advantage of multiple ontologies for indirect 

knowledge the unification of concepts must be restricted to highly compatible concepts. 

 

3.3.4. Insensitivity in Boosting graphs of different structural properties 

When two results inherently represent the same information but their structure differs, the 

current boosting algorithm tends to incorrectly assign the boost in confidence in equal 

amounts to all partial paths. Research in identifying the correct partial paths to apply 

boosting is a challenging problem to be addressed in this thesis. 
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4. Preliminary Results 
In this section we present some retrieval experiments using the federated approach to 

ontologies. One possible evaluation of the proposed approach requires a task centered 

evaluation process (Porzel and Malaka, 2004). Unfortunately at this time there are no 

existing standard procedures and test sets for ontologies, which forced us to create our 

own. For this reason we are unable to provide results comparing our system with other 

similar systems. Similar to the experiment performed by the mentioned authors, we 

selected the task of type checking, described below. 

4.1.1. Type Checking 

The task of type checking tries to determine if, given a type T and a concept C, C is of 

type T. In the case of the federated approach, we can achieve this by using three operators, 

the relation operator, the parents operator and the children operator, as previously 

described. 

 

Type checking using federated ontology search can be viewed as the task of finding an is-

a based path between two concepts. Our approach has the advantage of using indirect 

paths when no direct path is found. An indirect path consists of partial ordered sub paths 

that exist in separate ontologies but form one path when combined. Finding an indirect 

path is possible by simply applying either the parents operator or the children operator to 

the source node in one ontology and using the resulting nodes to query for a direct path in 

another ontology. The resulting path is the combination of these partial paths. Using 

indirect paths provides a promising way of combining information that by itself would be 

incomplete and enabling the deduction of previously non-existent paths. 

4.1.2. Experimental Setup 

A total of 9558 pairs were extracted from results of the Javelin question answering 

system in TREC QA 2003 [Nyberg et al., 2003]. Each pair consists of the expected 

answer type or subtype and the candidate answer.   



34 

 For the purposes of our evaluation we used two of the currently available 

ontologies, Wordnet and ThoughtTreasure. The purpose of this preliminary evaluation is 

to contrast the performance of each of the ontologies individually, which would be a 

typical scenario for a project using one ontology as a knowledge base, with the 

performance of the set of ontologies using a federated approach. 

 We have evaluated the recall and precision of the retrieved results.. 

4.1.3. Results and Analysis 

 Table 1 shows the recall after running the test set with different configurations. 

 

Configuration Recall 

Wordnet 4278 (44.7%) 

ThoughtTreasure 730 (7.6%) 

Combined 4686 (49%) 

Merge 4686 (49%) 

Merging + Indirect 6870 (71.8%) 

Test size 9558 
Table 1: Recall using different configurations with the full set of pairs 

 

Wordnet and ThoughtTreasure were experiments where Wordnet and ThoughtTreasure 

were used individually. The Combined experiment queried each of the ontologies 

individually, picking only the top ranked result. The recall is lower than the direct sum of 

the individual results due to knowledge overlap in the ontologies. The Merge experiment 

queries both ontologies but merges the results using the merging algorithm described 

previously. Finally we use merging as well as indirect path query to perform the last 

experiment  

 

An indirect path is a path that is comprised of partial paths contained in different 

ontologies, as shown below. 
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Although the recall remained the same when applying the merging procedure, the 

average confidence of the top result, in cases where there was more than one result, 

increased significantly (28%), as shown in Table 2. 

 

 avg. confidence 

Without merging 0.72 
With merging 0.93 

increase 28.7% 
Table 2 – The Increase in the average confidence of the top ranked result due to the merging algorithm. 

 

In order to test the accuracy of the federated approach, we created a gold standard for a 

subset of the full set of pairs. Using random sampling, we selected 1300 pairs, which we 

then proceeded to judge manually. For each pair in the gold standard subset we generated 

a tuple of the form (type, concept, judgment), where judgment reflects if the concept is of 

the type type.  

 

We compared the answers of the Federated Search with the gold standard by applying a 

variation on the result score threshold. If a score is below the threshold then the concept 

is considered not to be of the type type.  
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  Precision Recall F1 Measure 

Combined (W+T) 0.59 0.49 0.53 

FOS (M+I) 0.67 0.71 0.69 

Increase 30.18% 

Table 3 – Precision and recall of the Federated System using Wordnet and ThoughtTreasure 

 

We obtained a significant increase in performance when using the federated search 

approach. The optimal threshold for this experiment is T=0.1 with a precision of P = 

0.676. The recall was very close to the one obtained in the full set with a recall of 0.71 

(71%). Below we can see the F-Measure of the system. 

 

5. Roadmap 

5.1. Thesis Scope 

Research Topic Research Question Contributions to the field Possible Answer 

Query Description 

Operator Set 

What is the set of 

basic operations in 

an ontology 

General operator set that 

described the set of basic 

ontological operations 

Creation of a basic 

operator set through 

literature review 

Resource Description 

Ontology Description 

What are the areas of 

expertise of a given 

ontology 

Set of features for resource 

description 

Creation of set of 

queries to determine 

areas of expertise 

Resource Selection 

Concept Matching 

How to match 

concepts in the 

query, described by 

strings to concepts in 

the ontology 

Methodology for selecting 

matching concepts in 

ontologies given a query 

description 

Definition of context 

for ontology querying 

Fitness of an ontology given 

a query 

How to determine 

how good is an 

ontology given a 

certain query 

Algorithm for determining 

ontology fitness given a 

query 

Usage of the 

determined areas and 

with conjunction with 

the context of the query 

Result Merging 

Result Similarity 

How to determine 

the similarity 

between two results 

Use the combination of 

concept and edge 

similarity with 

- Edge similarity 

How to determine 

the similarity 

between two edges 

- Concept Similarity How to determine 

the similarity 

Algorithm for determining 

result similarity and for 

merging results 

Use topological 

similarity, string 

similarity and property 

coherence (monotonic, 

reciprocal, etc..) for 
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between two 

concepts 

determination of 

similarities 

Result Boosting 

What is the correct 

way to boost the 

results? 

Use spread boost taking 

into account the 

properties of the 

ontology itself 

Result Scoring 

Adequacy of Result 

How well does the 

result answer the 

query (quantity of 

new information, 

precision of new 

information, etc) 

Width vs. Breadth 

Is it possible to 

describe the results 

in terms of quantity 

and quality of 

information? 

Algorithm for Scoring 

results. 

Using Utility-based 

metrics to boost the 

score of the results 

 

5.2. Research Activities 

This research is comprised mostly of the four major tasks described in 5.1. We will 

describe the activities in each task. The conclusion of these set of activities will lead to 

the creation of a framework for integration and use of ontologies for NLP applications. 

5.2.1. Graph Matching  

Graph Matching is one of the key components of the proposed research. It heavily 

influences both term matching and graph merging thus consisting of a fundamental focus 

of this research. Besides other aspects covered throughout this proposal, one important 

aspect is the definition of graph matching at three separate levels. At the structural level, 

string level and meta level. 

5.2.1.1. Structural Level Matching 

Matching at the structural level involves analyzing and comparing the structure of both 

graphs to be matched. This requires comparing branching factors, connectivity structure 

of the graphs, edge number and position. This can be done by extrapolating existing 

matching algorithms fine tuned to the purpose at hand. 
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5.2.1.2. String Level Matching 

String level matching involves comparing information contained within nodes or 

relations. This requires knowledge of the type of content we are comparing, given that 

some type of content requires exact matching (e.g. dates, distances) while other requires 

interval matching (E.g. weight of a whale can be from 5 to 50 tons). Besides string 

matching using algorithms such as the Q-Grams algorithm, we can use structural 

matching combined with string matching to identify synonyms. 

5.2.1.3. Meta Level Matching 

Metal Level matching refers to properties of the graph and its relations that are not 

structural or string based. Properties like relation exclusivity (E.g. we can only have one 

mother but we can have many siblings) force certain graphs to be incompatible due to 

meta knowledge on the information contained in those graphs. We must not only match 

the direct knowledge contained in the graphs, but also the inferred knowledge that can be 

extracted from them. 

5.2.2.  Ontological Metadata 

Given the diversity of ontological languages and the capabilities of expression that each 

language possesses, we must encode ontological metadata information. The purpose of 

this information is to help model the query performed in that ontology, as well as the 

results returned. Information like which relations are available, what kinds of logical 

structures are present and what inference mechanisms are active is necessary to correctly 

query ontologies and process their results. 

 

Some of the information that is required from the relations present in ontologies includes 

information about whether a relation is transitive, unique, reflexive and associative, 

amongst others. This suggests that some sort of relation algebra is required to effectively 

describe relation interplay accurately. 
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5.2.3. Query and Resource Description 

5.2.3.1. Creation of an operator set 

Creation of an operator set that corresponds to the basic set of operations usually 

performed in an ontology. Although the set of operators depends on the evaluation task, it 

is possible to decompose the typical ontological operations in a set of basic operators, 

using the current literature as a basis. 

5.2.3.2. Development of a set of ontology queries for Ontology 
Description 

In order to describe an ontology, a set of queries suitable to querying different types of 

ontologies must be created. This set of queries should come from various corpus, namely 

the CNS corpus, the AQUAINT corpus, amongst others. A methodology should be 

defined such that the extension of this query set becomes an easy task, possibly automatic, 

given the degree of variability of coverage in ontological resources. 

5.2.3.3. Extension of the operator set 

The current operator set will be extended to include a subset of the operators supported 

by SIRUP [Ziegler, et al., 2006]. Possible operators include 

Operator Description 

getConcept(name) 
Given a name, return all the concepts 

associated with it 

getRelationSet(concept) 
Retrieve the relations associated with a 

given concept 

getAttributes(concept) Retrieve the attributes of a given concept 

fillGaps(graph g) 
g is a graph with empty slots. Return the 

graph structures that fill those empty slots 

getInstances(concept) Retrieve the instances of a given concept 

isConcept(conceptName) 
returns true is the name corresponds to at 

least one concept 

isAttribute(attributeName) 
Returns true in the attribute name 

corresponds to at least one attribute 

isSimilar(conceptA, conceptB) Returns true if concept A and concept B 
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are similar 

getRelationedConcept(conceptA,[relationSet]) 

Returns the concepts related to conceptA 

using relations contained in the 

relationSet 

 

5.2.3.4. Evaluation of query set for Ontology Description 

This task consists of the evaluation of the results of the created query set. The evaluation 

type is described further ahead. 

5.2.4. Resource Selection 

5.2.4.1. Definition of a query context 

This task consists of the definition of what is a query context for an ontological query. 

This should take into account the structured nature of ontologies such that the context 

represents not only the set of concepts associated with the query term, but also the 

relations that exist between the query term and the concepts in the context. 

5.2.4.2. Matching the query terms 

I propose to address two problems with my research work, synonym terms and homonym 

terms. 

5.2.4.2.1. Synonym Terms 

Synonyms terms present a significant problem in term matching. Terms with very similar 

meaning are frequently represented by different strings, a situation which leads to an 

unsolved matching problem. We intend to leverage on the fact that we are using a 

federated approach to address this problem. 

 

The main idea is to use the graph structures of the returned results to query other 

ontologies and find synonyms. By exploring the structure surrounding terms whose 



41 

strings can be matched we can identify terms that have different strings but relate with 

the same surrounding term in the same way. An example is given below. 

Let ‘s consider the following query children(car). Our goal is to match car with both car 

and automobile.  

 
 

Given the graph that results from querying ontology A, we can use the structure of that 

result to query ontology B.   

 

 

5.2.4.2.2. Homonym Terms 

Given a query, this task is comprised of using the context defined in 5.2.2.1 to 

disambiguate between homonym terms. Current possibilities consist of the inclusion in 

the query of related words or sentences where the terms occur. 

5.2.4.3. Creation of an algorithm for determining ontology fit 

Given a query this task is comprised of the creation of an algorithm for the determining 

the probability of success of querying an ontology given a query, or p(O,Q). 

car 

sedan minivan 

is_a, 0.7 is_a, 0.6 

Ontology A 

Query : children(car) 

     

sedan minivan 

Ontology B 

Query : fillGaps(g) 

is_a is_a 

g 
automobile 

sedan minivan 

is_a is_a 

g’ 
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5.2.4.4. Evaluation of Resource Selection 

This task consists of an evaluation of the algorithms for Resource Selection. 

5.2.5. Result Merging 

5.2.5.1. Experimentation with topological similarity, property 
coherence and string similarity 

This tasks consists of experiments using topological similarity, string similarity and 

property coherence for determining the similarity of results. 

5.2.5.2. Refinement of current boosting algorithm 

The current boosting algorithm is not sensitive to structural differences in similar results; 

this task consists of refining the current algorithm so that it is more robust and sensitive 

to this situation. 

5.2.5.3. Evaluation of Similarity measures and boosting algorithm 

This consists of evaluating the similarity measures and boosting algorithm created in the 

previous points. 

5.2.6. Result Scoring 

5.2.6.1. Definition of utility metric for determining the appropriateness 
of the result given the query 

This task consists of the creation of an utility metric that takes into account the 

information need in the query to determine the goodness of the results in order to 

influence the ranking. 

5.2.6.2. Evaluation of the scoring metric 

This task consists of the evaluation of the created scoring metric. 



43 

5.3. Evaluation 

Different methods have been used to evaluate single ontology systems [Hartmann, et al., 

2004; Porzel and Malaka, 2004]. These methods address different ontological aspects, 

namely coherence, coverage regarding a corpus, redundancy, amongst others. For our 

case, given that we are not trying to evaluate the ontologies themselves, but their 

combined use, we believe that a task based evaluation is the most suitable form of 

evaluation. This means the use of the existing type checking task, but also the creation of 

a different task for evaluation of the Federated Ontology System. We propose to perform 

a task based on the TREC QA set of factoid questions as well as at least one other task. 

5.3.1. Factoid TREC QA Task 

 TREC QA set of factoid questions for evaluation of the proposed approach such as 

suggested in [Lita, et al., 2004]. The reasons for this are the following 

- The TREC QA questions have available answers and the methods to judge are 

automatic and straightforward. 

- The relations displayed in the TREC QA factoid questions represent a range 

of relations whose coverage is wide enough to test large ontologies such as 

Wordnet and ThoughtTreasure. 

The Evaluation will address the precision and recall of the system, as well as key aspects 

such as the impact that the different methods of merging and scoring have in the results 

of the system. This will allow us to understand the factors at play in the federated system. 

 

The goal of the evaluation is to take us beyond factoid question answering, since there in 

lays the challenge to and greater benefit from the use of multiple ontologies. 

 

The evaluation will consist of the following steps: 

1) Selection of the set of ontologies to use in the evaluation. The set should be 

comprised of ontologies in the number between 6 and 12. 

a) Current ontologies considered 

1 WordNet 
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2 Cyc Research 

3 ThoughtTreasure 

4 CNS ontology 

5 Scone Ontology 

6 SUMO ontology 

7 Wikipedia derived ontology 

8 OpenMind Ontology 

9 MindNet Ontology 

10 Omega Ontology 

11 MultiNet Ontology 

2) Creation of the set of necessary operators 

3) A/B comparison of  type-check task using the researched methods 

4) Creation of a test set using TREC QA 2005 factoid questions. This includes queries 

and answer sets. 

5) A/B comparison of factoid QA task using the refined methods 

a) Comparison of each individual ontology and the federated system 

b) Comparison of the federated system with or without the merging algorithm 

c) Comparison of the federated system 

5.3.2. Possible evaluation tasks 

5.3.2.1. Tagging Ontological Relations 

 This task is similar to the task described in [Porzel and Malaka, 2004]. The goal is 

to correctly tag the ontological relations that hold between ontologically equivalent 

marked-up entities. This is similar to the task of identifying correct frames for labeled 

verbs and arguments, presented in [Gildea and Jurafsky, 2002]. Some of the relevant 

ontologies relevant to this task are Framenet, VerbNet and Propbank. 
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5.3.2.2. Image Labeling 

 Given the recent advances in Human Computation [von Ahn and Dabbish, 2004], 

it is likely that we will now have millions of labeled images. It would be interesting to 

further label these images with ontological relations in order to increase the relational 

density of the images and the quantity of labels. This way, we would be able to query for 

animals and get images of dogs, cats, etc. 

 In this case the purpose would to leverage on the large number of ontologies that 

exist in ontology repositories and, although loosing some language diversity, benefit from 

an experiment that is both orthogonal to the factoid QA and uses a significantly larger 

number of ontologies. 

5.3.2.3. Ontology Clustering 

 The goal of Ontology clustering is to cluster ontologies based on topics. This 

would allow, for example, determining commonsense regarding a concept using a set of 

ontologies. In this task a list of topics is given and the goal is to associate ontologies with 

each topic. 

5.3.3. Condition of Success 

We will have achieved success if the set of results can be sufficiently explained while 

providing better task results than using an independent set of ontologies in the proposed 

evaluation task. 
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5.4. Timetable 

A tentative timetable is provided here. The expected completion of this thesis is 

December of 2007 

 

TASK Duration of task 

Operator Set definition 15 days 

Query Set Creation 1 month 

Definition of a query context 15 days 

Algorithms for concept matching 2 months 

Evaluation of concept matching algorithms 1 month 

Experiment with topological merging 1 month 

Refinement of boosting algorithm 1 month 

Evaluation of merging algorithm 1 month 

Utility Based Ranking Algorithm 1 month 

Evaluation of Ranking Algorithm 1 month 

Final Task Based Evaluation 2 months 

Thesis write up 3 months 
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